/** ****************************************************************************** * @file stm32g0xx_hal_fdcan.c * @author MCD Application Team * @brief FDCAN HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Flexible DataRate Controller Area Network * (FDCAN) peripheral: * + Initialization and de-initialization functions * + IO operation functions * + Peripheral Configuration and Control functions * + Peripheral State and Error functions * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] (#) Initialize the FDCAN peripheral using HAL_FDCAN_Init function. (#) If needed , configure the reception filters and optional features using the following configuration functions: (++) HAL_FDCAN_ConfigFilter (++) HAL_FDCAN_ConfigGlobalFilter (++) HAL_FDCAN_ConfigExtendedIdMask (++) HAL_FDCAN_ConfigRxFifoOverwrite (++) HAL_FDCAN_ConfigRamWatchdog (++) HAL_FDCAN_ConfigTimestampCounter (++) HAL_FDCAN_EnableTimestampCounter (++) HAL_FDCAN_DisableTimestampCounter (++) HAL_FDCAN_ConfigTimeoutCounter (++) HAL_FDCAN_EnableTimeoutCounter (++) HAL_FDCAN_DisableTimeoutCounter (++) HAL_FDCAN_ConfigTxDelayCompensation (++) HAL_FDCAN_EnableTxDelayCompensation (++) HAL_FDCAN_DisableTxDelayCompensation (++) HAL_FDCAN_EnableISOMode (++) HAL_FDCAN_DisableISOMode (++) HAL_FDCAN_EnableEdgeFiltering (++) HAL_FDCAN_DisableEdgeFiltering (#) Start the FDCAN module using HAL_FDCAN_Start function. At this level the node is active on the bus: it can send and receive messages. (#) The following Tx control functions can only be called when the FDCAN module is started: (++) HAL_FDCAN_AddMessageToTxFifoQ (++) HAL_FDCAN_AbortTxRequest (#) After having submitted a Tx request in Tx Fifo or Queue, it is possible to get Tx buffer location used to place the Tx request thanks to HAL_FDCAN_GetLatestTxFifoQRequestBuffer API. It is then possible to abort later on the corresponding Tx Request using HAL_FDCAN_AbortTxRequest API. (#) When a message is received into the FDCAN message RAM, it can be retrieved using the HAL_FDCAN_GetRxMessage function. (#) Calling the HAL_FDCAN_Stop function stops the FDCAN module by entering it to initialization mode and re-enabling access to configuration registers through the configuration functions listed here above. (#) All other control functions can be called any time after initialization phase, no matter if the FDCAN module is started or stopped. *** Polling mode operation *** ============================== [..] (#) Reception and transmission states can be monitored via the following functions: (++) HAL_FDCAN_IsTxBufferMessagePending (++) HAL_FDCAN_GetRxFifoFillLevel (++) HAL_FDCAN_GetTxFifoFreeLevel *** Interrupt mode operation *** ================================ [..] (#) There are two interrupt lines: line 0 and 1. By default, all interrupts are assigned to line 0. Interrupt lines can be configured using HAL_FDCAN_ConfigInterruptLines function. (#) Notifications are activated using HAL_FDCAN_ActivateNotification function. Then, the process can be controlled through one of the available user callbacks: HAL_FDCAN_xxxCallback. *** Callback registration *** ============================================= The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS when set to 1 allows the user to configure dynamically the driver callbacks. Use Function @ref HAL_FDCAN_RegisterCallback() or HAL_FDCAN_RegisterXXXCallback() to register an interrupt callback. Function @ref HAL_FDCAN_RegisterCallback() allows to register following callbacks: (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. (+) HighPriorityMessageCallback : High Priority Message Callback. (+) TimestampWraparoundCallback : Timestamp Wraparound Callback. (+) TimeoutOccurredCallback : Timeout Occurred Callback. (+) ErrorCallback : Error Callback. (+) MspInitCallback : FDCAN MspInit. (+) MspDeInitCallback : FDCAN MspDeInit. This function takes as parameters the HAL peripheral handle, the Callback ID and a pointer to the user callback function. For specific callbacks TxEventFifoCallback, RxFifo0Callback, RxFifo1Callback, TxBufferCompleteCallback, TxBufferAbortCallback and ErrorStatusCallback use dedicated register callbacks : respectively @ref HAL_FDCAN_RegisterTxEventFifoCallback(), @ref HAL_FDCAN_RegisterRxFifo0Callback(), @ref HAL_FDCAN_RegisterRxFifo1Callback(), @ref HAL_FDCAN_RegisterTxBufferCompleteCallback(), @ref HAL_FDCAN_RegisterTxBufferAbortCallback() and @ref HAL_FDCAN_RegisterErrorStatusCallback(). Use function @ref HAL_FDCAN_UnRegisterCallback() to reset a callback to the default weak function. @ref HAL_FDCAN_UnRegisterCallback takes as parameters the HAL peripheral handle, and the Callback ID. This function allows to reset following callbacks: (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. (+) HighPriorityMessageCallback : High Priority Message Callback. (+) TimestampWraparoundCallback : Timestamp Wraparound Callback. (+) TimeoutOccurredCallback : Timeout Occurred Callback. (+) ErrorCallback : Error Callback. (+) MspInitCallback : FDCAN MspInit. (+) MspDeInitCallback : FDCAN MspDeInit. For specific callbacks TxEventFifoCallback, RxFifo0Callback, RxFifo1Callback, TxBufferCompleteCallback and TxBufferAbortCallback, use dedicated unregister callbacks : respectively @ref HAL_FDCAN_UnRegisterTxEventFifoCallback(), @ref HAL_FDCAN_UnRegisterRxFifo0Callback(), @ref HAL_FDCAN_UnRegisterRxFifo1Callback(), @ref HAL_FDCAN_UnRegisterTxBufferCompleteCallback(), @ref HAL_FDCAN_UnRegisterTxBufferAbortCallback() and @ref HAL_FDCAN_UnRegisterErrorStatusCallback(). By default, after the @ref HAL_FDCAN_Init() and when the state is HAL_FDCAN_STATE_RESET, all callbacks are set to the corresponding weak functions: examples @ref HAL_FDCAN_ErrorCallback(). Exception done for MspInit and MspDeInit functions that are reset to the legacy weak function in the @ref HAL_FDCAN_Init()/ @ref HAL_FDCAN_DeInit() only when these callbacks are null (not registered beforehand). if not, MspInit or MspDeInit are not null, the @ref HAL_FDCAN_Init()/ @ref HAL_FDCAN_DeInit() keep and use the user MspInit/MspDeInit callbacks (registered beforehand) Callbacks can be registered/unregistered in HAL_FDCAN_STATE_READY state only. Exception done MspInit/MspDeInit that can be registered/unregistered in HAL_FDCAN_STATE_READY or HAL_FDCAN_STATE_RESET state, thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. In that case first register the MspInit/MspDeInit user callbacks using @ref HAL_FDCAN_RegisterCallback() before calling @ref HAL_FDCAN_DeInit() or @ref HAL_FDCAN_Init() function. When The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS is set to 0 or not defined, the callback registration feature is not available and all callbacks are set to the corresponding weak functions. @endverbatim ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32g0xx_hal.h" #if defined(FDCAN1) /** @addtogroup STM32G0xx_HAL_Driver * @{ */ /** @defgroup FDCAN FDCAN * @brief FDCAN HAL module driver * @{ */ #ifdef HAL_FDCAN_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @addtogroup FDCAN_Private_Constants * @{ */ #define FDCAN_TIMEOUT_VALUE 10U #define FDCAN_TX_EVENT_FIFO_MASK (FDCAN_IR_TEFL | FDCAN_IR_TEFF | FDCAN_IR_TEFN) #define FDCAN_RX_FIFO0_MASK (FDCAN_IR_RF0L | FDCAN_IR_RF0F | FDCAN_IR_RF0N) #define FDCAN_RX_FIFO1_MASK (FDCAN_IR_RF1L | FDCAN_IR_RF1F | FDCAN_IR_RF1N) #define FDCAN_ERROR_MASK (FDCAN_IR_ELO | FDCAN_IR_WDI | FDCAN_IR_PEA | FDCAN_IR_PED | FDCAN_IR_ARA) #define FDCAN_ERROR_STATUS_MASK (FDCAN_IR_EP | FDCAN_IR_EW | FDCAN_IR_BO) #define FDCAN_ELEMENT_MASK_STDID ((uint32_t)0x1FFC0000U) /* Standard Identifier */ #define FDCAN_ELEMENT_MASK_EXTID ((uint32_t)0x1FFFFFFFU) /* Extended Identifier */ #define FDCAN_ELEMENT_MASK_RTR ((uint32_t)0x20000000U) /* Remote Transmission Request */ #define FDCAN_ELEMENT_MASK_XTD ((uint32_t)0x40000000U) /* Extended Identifier */ #define FDCAN_ELEMENT_MASK_ESI ((uint32_t)0x80000000U) /* Error State Indicator */ #define FDCAN_ELEMENT_MASK_TS ((uint32_t)0x0000FFFFU) /* Timestamp */ #define FDCAN_ELEMENT_MASK_DLC ((uint32_t)0x000F0000U) /* Data Length Code */ #define FDCAN_ELEMENT_MASK_BRS ((uint32_t)0x00100000U) /* Bit Rate Switch */ #define FDCAN_ELEMENT_MASK_FDF ((uint32_t)0x00200000U) /* FD Format */ #define FDCAN_ELEMENT_MASK_EFC ((uint32_t)0x00800000U) /* Event FIFO Control */ #define FDCAN_ELEMENT_MASK_MM ((uint32_t)0xFF000000U) /* Message Marker */ #define FDCAN_ELEMENT_MASK_FIDX ((uint32_t)0x7F000000U) /* Filter Index */ #define FDCAN_ELEMENT_MASK_ANMF ((uint32_t)0x80000000U) /* Accepted Non-matching Frame */ #define FDCAN_ELEMENT_MASK_ET ((uint32_t)0x00C00000U) /* Event type */ #define SRAMCAN_FLS_NBR (28U) /* Max. Filter List Standard Number */ #define SRAMCAN_FLE_NBR ( 8U) /* Max. Filter List Extended Number */ #define SRAMCAN_RF0_NBR ( 3U) /* RX FIFO 0 Elements Number */ #define SRAMCAN_RF1_NBR ( 3U) /* RX FIFO 1 Elements Number */ #define SRAMCAN_TEF_NBR ( 3U) /* TX Event FIFO Elements Number */ #define SRAMCAN_TFQ_NBR ( 3U) /* TX FIFO/Queue Elements Number */ #define SRAMCAN_FLS_SIZE ( 1U * 4U) /* Filter Standard Element Size in bytes */ #define SRAMCAN_FLE_SIZE ( 2U * 4U) /* Filter Extended Element Size in bytes */ #define SRAMCAN_RF0_SIZE (18U * 4U) /* RX FIFO 0 Elements Size in bytes */ #define SRAMCAN_RF1_SIZE (18U * 4U) /* RX FIFO 1 Elements Size in bytes */ #define SRAMCAN_TEF_SIZE ( 2U * 4U) /* TX Event FIFO Elements Size in bytes */ #define SRAMCAN_TFQ_SIZE (18U * 4U) /* TX FIFO/Queue Elements Size in bytes */ #define SRAMCAN_FLSSA ((uint32_t)0) /* Filter List Standard Start Address */ #define SRAMCAN_FLESA ((uint32_t)(SRAMCAN_FLSSA + (SRAMCAN_FLS_NBR * SRAMCAN_FLS_SIZE))) /* Filter List Extended Start Address */ #define SRAMCAN_RF0SA ((uint32_t)(SRAMCAN_FLESA + (SRAMCAN_FLE_NBR * SRAMCAN_FLE_SIZE))) /* Rx FIFO 0 Start Address */ #define SRAMCAN_RF1SA ((uint32_t)(SRAMCAN_RF0SA + (SRAMCAN_RF0_NBR * SRAMCAN_RF0_SIZE))) /* Rx FIFO 1 Start Address */ #define SRAMCAN_TEFSA ((uint32_t)(SRAMCAN_RF1SA + (SRAMCAN_RF1_NBR * SRAMCAN_RF1_SIZE))) /* Tx Event FIFO Start Address */ #define SRAMCAN_TFQSA ((uint32_t)(SRAMCAN_TEFSA + (SRAMCAN_TEF_NBR * SRAMCAN_TEF_SIZE))) /* Tx FIFO/Queue Start Address */ #define SRAMCAN_SIZE ((uint32_t)(SRAMCAN_TFQSA + (SRAMCAN_TFQ_NBR * SRAMCAN_TFQ_SIZE))) /* Message RAM size */ /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ static const uint8_t DLCtoBytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64}; /* Private function prototypes -----------------------------------------------*/ /** @addtogroup FDCAN_Private_Functions_Prototypes * @{ */ static void FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan); static void FDCAN_CopyMessageToRAM(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxHeaderTypeDef *pTxHeader, uint8_t *pTxData, uint32_t BufferIndex); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup FDCAN_Exported_Functions FDCAN Exported Functions * @{ */ /** @defgroup FDCAN_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FDCAN. (+) De-initialize the FDCAN. (+) Enter FDCAN peripheral in power down mode. (+) Exit power down mode. (+) Register callbacks. (+) Unregister callbacks. @endverbatim * @{ */ /** * @brief Initializes the FDCAN peripheral according to the specified * parameters in the FDCAN_InitTypeDef structure. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_Init(FDCAN_HandleTypeDef *hfdcan) { uint32_t tickstart; /* Check FDCAN handle */ if (hfdcan == NULL) { return HAL_ERROR; } /* Check function parameters */ assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance)); if (hfdcan->Instance == FDCAN1) { assert_param(IS_FDCAN_CKDIV(hfdcan->Init.ClockDivider)); } assert_param(IS_FDCAN_FRAME_FORMAT(hfdcan->Init.FrameFormat)); assert_param(IS_FDCAN_MODE(hfdcan->Init.Mode)); assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.AutoRetransmission)); assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.TransmitPause)); assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.ProtocolException)); assert_param(IS_FDCAN_NOMINAL_PRESCALER(hfdcan->Init.NominalPrescaler)); assert_param(IS_FDCAN_NOMINAL_SJW(hfdcan->Init.NominalSyncJumpWidth)); assert_param(IS_FDCAN_NOMINAL_TSEG1(hfdcan->Init.NominalTimeSeg1)); assert_param(IS_FDCAN_NOMINAL_TSEG2(hfdcan->Init.NominalTimeSeg2)); if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS) { assert_param(IS_FDCAN_DATA_PRESCALER(hfdcan->Init.DataPrescaler)); assert_param(IS_FDCAN_DATA_SJW(hfdcan->Init.DataSyncJumpWidth)); assert_param(IS_FDCAN_DATA_TSEG1(hfdcan->Init.DataTimeSeg1)); assert_param(IS_FDCAN_DATA_TSEG2(hfdcan->Init.DataTimeSeg2)); } assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.StdFiltersNbr, SRAMCAN_FLS_NBR)); assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.ExtFiltersNbr, SRAMCAN_FLE_NBR)); assert_param(IS_FDCAN_TX_FIFO_QUEUE_MODE(hfdcan->Init.TxFifoQueueMode)); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 if (hfdcan->State == HAL_FDCAN_STATE_RESET) { /* Allocate lock resource and initialize it */ hfdcan->Lock = HAL_UNLOCKED; /* Reset callbacks to legacy functions */ hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* Legacy weak TxEventFifoCallback */ hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* Legacy weak RxFifo0Callback */ hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* Legacy weak RxFifo1Callback */ hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* Legacy weak TxBufferCompleteCallback */ hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* Legacy weak TxBufferAbortCallback */ hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; /* Legacy weak HighPriorityMessageCallback */ hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; /* Legacy weak TimestampWraparoundCallback */ hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; /* Legacy weak TimeoutOccurredCallback */ hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; /* Legacy weak ErrorCallback */ hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* Legacy weak ErrorStatusCallback */ if (hfdcan->MspInitCallback == NULL) { hfdcan->MspInitCallback = HAL_FDCAN_MspInit; /* Legacy weak MspInit */ } /* Init the low level hardware: CLOCK, NVIC */ hfdcan->MspInitCallback(hfdcan); } #else if (hfdcan->State == HAL_FDCAN_STATE_RESET) { /* Allocate lock resource and initialize it */ hfdcan->Lock = HAL_UNLOCKED; /* Init the low level hardware: CLOCK, NVIC */ HAL_FDCAN_MspInit(hfdcan); } #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ /* Exit from Sleep mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Get tick */ tickstart = HAL_GetTick(); /* Check Sleep mode acknowledge */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Request initialisation */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until the INIT bit into CCCR register is set */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U) { /* Check for the Timeout */ if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Enable configuration change */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE); /* Check FDCAN instance */ if (hfdcan->Instance == FDCAN1) { /* Configure Clock divider */ FDCAN_CONFIG->CKDIV = hfdcan->Init.ClockDivider; } /* Set the no automatic retransmission */ if (hfdcan->Init.AutoRetransmission == ENABLE) { CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR); } else { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR); } /* Set the transmit pause feature */ if (hfdcan->Init.TransmitPause == ENABLE) { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP); } else { CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP); } /* Set the Protocol Exception Handling */ if (hfdcan->Init.ProtocolException == ENABLE) { CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD); } else { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD); } /* Set FDCAN Frame Format */ MODIFY_REG(hfdcan->Instance->CCCR, FDCAN_FRAME_FD_BRS, hfdcan->Init.FrameFormat); /* Reset FDCAN Operation Mode */ CLEAR_BIT(hfdcan->Instance->CCCR, (FDCAN_CCCR_TEST | FDCAN_CCCR_MON | FDCAN_CCCR_ASM)); CLEAR_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK); /* Set FDCAN Operating Mode: | Normal | Restricted | Bus | Internal | External | | Operation | Monitoring | LoopBack | LoopBack CCCR.TEST | 0 | 0 | 0 | 1 | 1 CCCR.MON | 0 | 0 | 1 | 1 | 0 TEST.LBCK | 0 | 0 | 0 | 1 | 1 CCCR.ASM | 0 | 1 | 0 | 0 | 0 */ if (hfdcan->Init.Mode == FDCAN_MODE_RESTRICTED_OPERATION) { /* Enable Restricted Operation mode */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM); } else if (hfdcan->Init.Mode != FDCAN_MODE_NORMAL) { if (hfdcan->Init.Mode != FDCAN_MODE_BUS_MONITORING) { /* Enable write access to TEST register */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TEST); /* Enable LoopBack mode */ SET_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK); if (hfdcan->Init.Mode == FDCAN_MODE_INTERNAL_LOOPBACK) { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON); } } else { /* Enable bus monitoring mode */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON); } } else { /* Nothing to do: normal mode */ } /* Set the nominal bit timing register */ hfdcan->Instance->NBTP = ((((uint32_t)hfdcan->Init.NominalSyncJumpWidth - 1U) << FDCAN_NBTP_NSJW_Pos) | \ (((uint32_t)hfdcan->Init.NominalTimeSeg1 - 1U) << FDCAN_NBTP_NTSEG1_Pos) | \ (((uint32_t)hfdcan->Init.NominalTimeSeg2 - 1U) << FDCAN_NBTP_NTSEG2_Pos) | \ (((uint32_t)hfdcan->Init.NominalPrescaler - 1U) << FDCAN_NBTP_NBRP_Pos)); /* If FD operation with BRS is selected, set the data bit timing register */ if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS) { hfdcan->Instance->DBTP = ((((uint32_t)hfdcan->Init.DataSyncJumpWidth - 1U) << FDCAN_DBTP_DSJW_Pos) | \ (((uint32_t)hfdcan->Init.DataTimeSeg1 - 1U) << FDCAN_DBTP_DTSEG1_Pos) | \ (((uint32_t)hfdcan->Init.DataTimeSeg2 - 1U) << FDCAN_DBTP_DTSEG2_Pos) | \ (((uint32_t)hfdcan->Init.DataPrescaler - 1U) << FDCAN_DBTP_DBRP_Pos)); } /* Select between Tx FIFO and Tx Queue operation modes */ SET_BIT(hfdcan->Instance->TXBC, hfdcan->Init.TxFifoQueueMode); /* Calculate each RAM block address */ FDCAN_CalcultateRamBlockAddresses(hfdcan); /* Initialize the Latest Tx request buffer index */ hfdcan->LatestTxFifoQRequest = 0U; /* Initialize the error code */ hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; /* Initialize the FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_READY; /* Return function status */ return HAL_OK; } /** * @brief Deinitializes the FDCAN peripheral registers to their default reset values. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DeInit(FDCAN_HandleTypeDef *hfdcan) { /* Check FDCAN handle */ if (hfdcan == NULL) { return HAL_ERROR; } /* Check function parameters */ assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance)); /* Stop the FDCAN module: return value is voluntary ignored */ (void)HAL_FDCAN_Stop(hfdcan); /* Disable Interrupt lines */ CLEAR_BIT(hfdcan->Instance->ILE, (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1)); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 if (hfdcan->MspDeInitCallback == NULL) { hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; /* Legacy weak MspDeInit */ } /* DeInit the low level hardware: CLOCK, NVIC */ hfdcan->MspDeInitCallback(hfdcan); #else /* DeInit the low level hardware: CLOCK, NVIC */ HAL_FDCAN_MspDeInit(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ /* Reset the FDCAN ErrorCode */ hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_RESET; /* Return function status */ return HAL_OK; } /** * @brief Initializes the FDCAN MSP. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_MspInit could be implemented in the user file */ } /** * @brief DeInitializes the FDCAN MSP. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_MspDeInit could be implemented in the user file */ } /** * @brief Enter FDCAN peripheral in sleep mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnterPowerDownMode(FDCAN_HandleTypeDef *hfdcan) { uint32_t tickstart; /* Request clock stop */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until FDCAN is ready for power down */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == 0U) { if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Return function status */ return HAL_OK; } /** * @brief Exit power down mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ExitPowerDownMode(FDCAN_HandleTypeDef *hfdcan) { uint32_t tickstart; /* Reset clock stop request */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until FDCAN exits sleep mode */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Enter normal operation */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Return function status */ return HAL_OK; } #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /** * @brief Register a FDCAN CallBack. * To be used instead of the weak predefined callback * @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains * the configuration information for FDCAN module * @param CallbackID ID of the callback to be registered * This parameter can be one of the following values: * @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID * @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID * @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID * @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID * @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID * @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID * @param pCallback pointer to the Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID, void (* pCallback)(FDCAN_HandleTypeDef *_hFDCAN)) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { switch (CallbackID) { case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID : hfdcan->TxFifoEmptyCallback = pCallback; break; case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID : hfdcan->HighPriorityMessageCallback = pCallback; break; case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID : hfdcan->TimestampWraparoundCallback = pCallback; break; case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID : hfdcan->TimeoutOccurredCallback = pCallback; break; case HAL_FDCAN_ERROR_CALLBACK_CB_ID : hfdcan->ErrorCallback = pCallback; break; case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = pCallback; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (hfdcan->State == HAL_FDCAN_STATE_RESET) { switch (CallbackID) { case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = pCallback; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Unregister a FDCAN CallBack. * FDCAN callback is redirected to the weak predefined callback * @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains * the configuration information for FDCAN module * @param CallbackID ID of the callback to be unregistered * This parameter can be one of the following values: * @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID * @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID * @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID * @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID * @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID * @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { switch (CallbackID) { case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID : hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; break; case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID : hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; break; case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID : hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; break; case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID : hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; break; case HAL_FDCAN_ERROR_CALLBACK_CB_ID : hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; break; case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = HAL_FDCAN_MspInit; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (hfdcan->State == HAL_FDCAN_STATE_RESET) { switch (CallbackID) { case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = HAL_FDCAN_MspInit; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Tx Event Fifo FDCAN Callback * To be used instead of the weak HAL_FDCAN_TxEventFifoCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Tx Event Fifo Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TxEventFifoCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxEventFifoCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Tx Event Fifo FDCAN Callback * Tx Event Fifo FDCAN Callback is redirected to the weak HAL_FDCAN_TxEventFifoCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* Legacy weak TxEventFifoCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Rx Fifo 0 FDCAN Callback * To be used instead of the weak HAL_FDCAN_RxFifo0Callback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Rx Fifo 0 Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_RxFifo0CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo0Callback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Rx Fifo 0 FDCAN Callback * Rx Fifo 0 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo0Callback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* Legacy weak RxFifo0Callback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Rx Fifo 1 FDCAN Callback * To be used instead of the weak HAL_FDCAN_RxFifo1Callback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Rx Fifo 1 Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_RxFifo1CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo1Callback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Rx Fifo 1 FDCAN Callback * Rx Fifo 1 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo1Callback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* Legacy weak RxFifo1Callback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Tx Buffer Complete FDCAN Callback * To be used instead of the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Tx Buffer Complete Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TxBufferCompleteCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferCompleteCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Tx Buffer Complete FDCAN Callback * Tx Buffer Complete FDCAN Callback is redirected to the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* Legacy weak TxBufferCompleteCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Tx Buffer Abort FDCAN Callback * To be used instead of the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Tx Buffer Abort Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TxBufferAbortCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferAbortCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Tx Buffer Abort FDCAN Callback * Tx Buffer Abort FDCAN Callback is redirected to the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* Legacy weak TxBufferAbortCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Error Status FDCAN Callback * To be used instead of the weak HAL_FDCAN_ErrorStatusCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Error Status Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_ErrorStatusCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->ErrorStatusCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Error Status FDCAN Callback * Error Status FDCAN Callback is redirected to the weak HAL_FDCAN_ErrorStatusCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* Legacy weak ErrorStatusCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group2 Configuration functions * @brief FDCAN Configuration functions. * @verbatim ============================================================================== ##### Configuration functions ##### ============================================================================== [..] This section provides functions allowing to: (+) HAL_FDCAN_ConfigFilter : Configure the FDCAN reception filters (+) HAL_FDCAN_ConfigGlobalFilter : Configure the FDCAN global filter (+) HAL_FDCAN_ConfigExtendedIdMask : Configure the extended ID mask (+) HAL_FDCAN_ConfigRxFifoOverwrite : Configure the Rx FIFO operation mode (+) HAL_FDCAN_ConfigRamWatchdog : Configure the RAM watchdog (+) HAL_FDCAN_ConfigTimestampCounter : Configure the timestamp counter (+) HAL_FDCAN_EnableTimestampCounter : Enable the timestamp counter (+) HAL_FDCAN_DisableTimestampCounter : Disable the timestamp counter (+) HAL_FDCAN_GetTimestampCounter : Get the timestamp counter value (+) HAL_FDCAN_ResetTimestampCounter : Reset the timestamp counter to zero (+) HAL_FDCAN_ConfigTimeoutCounter : Configure the timeout counter (+) HAL_FDCAN_EnableTimeoutCounter : Enable the timeout counter (+) HAL_FDCAN_DisableTimeoutCounter : Disable the timeout counter (+) HAL_FDCAN_GetTimeoutCounter : Get the timeout counter value (+) HAL_FDCAN_ResetTimeoutCounter : Reset the timeout counter to its start value (+) HAL_FDCAN_ConfigTxDelayCompensation : Configure the transmitter delay compensation (+) HAL_FDCAN_EnableTxDelayCompensation : Enable the transmitter delay compensation (+) HAL_FDCAN_DisableTxDelayCompensation : Disable the transmitter delay compensation (+) HAL_FDCAN_EnableISOMode : Enable ISO 11898-1 protocol mode (+) HAL_FDCAN_DisableISOMode : Disable ISO 11898-1 protocol mode (+) HAL_FDCAN_EnableEdgeFiltering : Enable edge filtering during bus integration (+) HAL_FDCAN_DisableEdgeFiltering : Disable edge filtering during bus integration @endverbatim * @{ */ /** * @brief Configure the FDCAN reception filter according to the specified * parameters in the FDCAN_FilterTypeDef structure. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param sFilterConfig pointer to an FDCAN_FilterTypeDef structure that * contains the filter configuration information * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigFilter(FDCAN_HandleTypeDef *hfdcan, FDCAN_FilterTypeDef *sFilterConfig) { uint32_t FilterElementW1; uint32_t FilterElementW2; uint32_t *FilterAddress; HAL_FDCAN_StateTypeDef state = hfdcan->State; if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check function parameters */ assert_param(IS_FDCAN_ID_TYPE(sFilterConfig->IdType)); assert_param(IS_FDCAN_FILTER_CFG(sFilterConfig->FilterConfig)); if (sFilterConfig->IdType == FDCAN_STANDARD_ID) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.StdFiltersNbr - 1U))); assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x7FFU)); assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x7FFU)); assert_param(IS_FDCAN_STD_FILTER_TYPE(sFilterConfig->FilterType)); /* Build filter element */ FilterElementW1 = ((sFilterConfig->FilterType << 30U) | (sFilterConfig->FilterConfig << 27U) | (sFilterConfig->FilterID1 << 16U) | sFilterConfig->FilterID2); /* Calculate filter address */ FilterAddress = (uint32_t *)(hfdcan->msgRam.StandardFilterSA + (sFilterConfig->FilterIndex * SRAMCAN_FLS_SIZE)); /* Write filter element to the message RAM */ *FilterAddress = FilterElementW1; } else /* sFilterConfig->IdType == FDCAN_EXTENDED_ID */ { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.ExtFiltersNbr - 1U))); assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x1FFFFFFFU)); assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x1FFFFFFFU)); assert_param(IS_FDCAN_EXT_FILTER_TYPE(sFilterConfig->FilterType)); /* Build first word of filter element */ FilterElementW1 = ((sFilterConfig->FilterConfig << 29U) | sFilterConfig->FilterID1); /* Build second word of filter element */ FilterElementW2 = ((sFilterConfig->FilterType << 30U) | sFilterConfig->FilterID2); /* Calculate filter address */ FilterAddress = (uint32_t *)(hfdcan->msgRam.ExtendedFilterSA + (sFilterConfig->FilterIndex * SRAMCAN_FLE_SIZE)); /* Write filter element to the message RAM */ *FilterAddress = FilterElementW1; FilterAddress++; *FilterAddress = FilterElementW2; } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Configure the FDCAN global filter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param NonMatchingStd Defines how received messages with 11-bit IDs that * do not match any element of the filter list are treated. * This parameter can be a value of @arg FDCAN_Non_Matching_Frames. * @param NonMatchingExt Defines how received messages with 29-bit IDs that * do not match any element of the filter list are treated. * This parameter can be a value of @arg FDCAN_Non_Matching_Frames. * @param RejectRemoteStd Filter or reject all the remote 11-bit IDs frames. * This parameter can be a value of @arg FDCAN_Reject_Remote_Frames. * @param RejectRemoteExt Filter or reject all the remote 29-bit IDs frames. * This parameter can be a value of @arg FDCAN_Reject_Remote_Frames. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigGlobalFilter(FDCAN_HandleTypeDef *hfdcan, uint32_t NonMatchingStd, uint32_t NonMatchingExt, uint32_t RejectRemoteStd, uint32_t RejectRemoteExt) { /* Check function parameters */ assert_param(IS_FDCAN_NON_MATCHING(NonMatchingStd)); assert_param(IS_FDCAN_NON_MATCHING(NonMatchingExt)); assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteStd)); assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteExt)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure global filter */ MODIFY_REG(hfdcan->Instance->RXGFC, (FDCAN_RXGFC_ANFS | FDCAN_RXGFC_ANFE | FDCAN_RXGFC_RRFS | FDCAN_RXGFC_RRFE), ((NonMatchingStd << FDCAN_RXGFC_ANFS_Pos) | (NonMatchingExt << FDCAN_RXGFC_ANFE_Pos) | (RejectRemoteStd << FDCAN_RXGFC_RRFS_Pos) | (RejectRemoteExt << FDCAN_RXGFC_RRFE_Pos))); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the extended ID mask. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param Mask Extended ID Mask. This parameter must be a number between 0 and 0x1FFFFFFF * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigExtendedIdMask(FDCAN_HandleTypeDef *hfdcan, uint32_t Mask) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(Mask, 0x1FFFFFFFU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure the extended ID mask */ hfdcan->Instance->XIDAM = Mask; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the Rx FIFO operation mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo Rx FIFO. * This parameter can be one of the following values: * @arg FDCAN_RX_FIFO0: Rx FIFO 0 * @arg FDCAN_RX_FIFO1: Rx FIFO 1 * @param OperationMode operation mode. * This parameter can be a value of @arg FDCAN_Rx_FIFO_operation_mode. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigRxFifoOverwrite(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo, uint32_t OperationMode) { /* Check function parameters */ assert_param(IS_FDCAN_RX_FIFO(RxFifo)); assert_param(IS_FDCAN_RX_FIFO_MODE(OperationMode)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { if (RxFifo == FDCAN_RX_FIFO0) { /* Select FIFO 0 Operation Mode */ MODIFY_REG(hfdcan->Instance->RXGFC, FDCAN_RXGFC_F0OM, (OperationMode << FDCAN_RXGFC_F0OM_Pos)); } else /* RxFifo == FDCAN_RX_FIFO1 */ { /* Select FIFO 1 Operation Mode */ MODIFY_REG(hfdcan->Instance->RXGFC, FDCAN_RXGFC_F1OM, (OperationMode << FDCAN_RXGFC_F1OM_Pos)); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the RAM watchdog. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param CounterStartValue Start value of the Message RAM Watchdog Counter, * This parameter must be a number between 0x00 and 0xFF, * with the reset value of 0x00 the counter is disabled. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigRamWatchdog(FDCAN_HandleTypeDef *hfdcan, uint32_t CounterStartValue) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(CounterStartValue, 0xFFU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure the RAM watchdog counter start value */ MODIFY_REG(hfdcan->Instance->RWD, FDCAN_RWD_WDC, CounterStartValue); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the timestamp counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimestampPrescaler Timestamp Counter Prescaler. * This parameter can be a value of @arg FDCAN_Timestamp_Prescaler. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampPrescaler) { /* Check function parameters */ assert_param(IS_FDCAN_TIMESTAMP_PRESCALER(TimestampPrescaler)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure prescaler */ MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TCP, TimestampPrescaler); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable the timestamp counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimestampOperation Timestamp counter operation. * This parameter can be a value of @arg FDCAN_Timestamp. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampOperation) { /* Check function parameters */ assert_param(IS_FDCAN_TIMESTAMP(TimestampOperation)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable timestamp counter */ MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS, TimestampOperation); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable the timestamp counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableTimestampCounter(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable timestamp counter */ CLEAR_BIT(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Get the timestamp counter value. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Timestamp counter value */ uint16_t HAL_FDCAN_GetTimestampCounter(FDCAN_HandleTypeDef *hfdcan) { return (uint16_t)(hfdcan->Instance->TSCV); } /** * @brief Reset the timestamp counter to zero. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ResetTimestampCounter(FDCAN_HandleTypeDef *hfdcan) { if ((hfdcan->Instance->TSCC & FDCAN_TSCC_TSS) != FDCAN_TIMESTAMP_EXTERNAL) { /* Reset timestamp counter. Actually any write operation to TSCV clears the counter */ CLEAR_REG(hfdcan->Instance->TSCV); } else { /* Update error code. Unable to reset external counter */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } /* Return function status */ return HAL_OK; } /** * @brief Configure the timeout counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimeoutOperation Timeout counter operation. * This parameter can be a value of @arg FDCAN_Timeout_Operation. * @param TimeoutPeriod Start value of the timeout down-counter. * This parameter must be a number between 0x0000 and 0xFFFF * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigTimeoutCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimeoutOperation, uint32_t TimeoutPeriod) { /* Check function parameters */ assert_param(IS_FDCAN_TIMEOUT(TimeoutOperation)); assert_param(IS_FDCAN_MAX_VALUE(TimeoutPeriod, 0xFFFFU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Select timeout operation and configure period */ MODIFY_REG(hfdcan->Instance->TOCC, (FDCAN_TOCC_TOS | FDCAN_TOCC_TOP), (TimeoutOperation | (TimeoutPeriod << FDCAN_TOCC_TOP_Pos))); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable the timeout counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable timeout counter */ SET_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable the timeout counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable timeout counter */ CLEAR_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Get the timeout counter value. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Timeout counter value */ uint16_t HAL_FDCAN_GetTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) { return (uint16_t)(hfdcan->Instance->TOCV); } /** * @brief Reset the timeout counter to its start value. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ResetTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) { if ((hfdcan->Instance->TOCC & FDCAN_TOCC_TOS) == FDCAN_TIMEOUT_CONTINUOUS) { /* Reset timeout counter to start value */ CLEAR_REG(hfdcan->Instance->TOCV); /* Return function status */ return HAL_OK; } else { /* Update error code. Unable to reset counter: controlled only by FIFO empty state */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } /** * @brief Configure the transmitter delay compensation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TdcOffset Transmitter Delay Compensation Offset. * This parameter must be a number between 0x00 and 0x7F. * @param TdcFilter Transmitter Delay Compensation Filter Window Length. * This parameter must be a number between 0x00 and 0x7F. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan, uint32_t TdcOffset, uint32_t TdcFilter) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(TdcOffset, 0x7FU)); assert_param(IS_FDCAN_MAX_VALUE(TdcFilter, 0x7FU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure TDC offset and filter window */ hfdcan->Instance->TDCR = ((TdcFilter << FDCAN_TDCR_TDCF_Pos) | (TdcOffset << FDCAN_TDCR_TDCO_Pos)); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable the transmitter delay compensation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable transmitter delay compensation */ SET_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable the transmitter delay compensation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable transmitter delay compensation */ CLEAR_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable ISO 11898-1 protocol mode. * CAN FD frame format is according to ISO 11898-1 standard. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableISOMode(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable Non ISO protocol mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable ISO 11898-1 protocol mode. * CAN FD frame format is according to Bosch CAN FD specification V1.0. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableISOMode(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable Non ISO protocol mode */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable edge filtering during bus integration. * Two consecutive dominant tq are required to detect an edge for hard synchronization. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable edge filtering */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable edge filtering during bus integration. * One dominant tq is required to detect an edge for hard synchronization. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable edge filtering */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group3 Control functions * @brief Control functions * @verbatim ============================================================================== ##### Control functions ##### ============================================================================== [..] This section provides functions allowing to: (+) HAL_FDCAN_Start : Start the FDCAN module (+) HAL_FDCAN_Stop : Stop the FDCAN module and enable access to configuration registers (+) HAL_FDCAN_AddMessageToTxFifoQ : Add a message to the Tx FIFO/Queue and activate the corresponding transmission request (+) HAL_FDCAN_GetLatestTxFifoQRequestBuffer : Get Tx buffer index of latest Tx FIFO/Queue request (+) HAL_FDCAN_AbortTxRequest : Abort transmission request (+) HAL_FDCAN_GetRxMessage : Get an FDCAN frame from the Rx FIFO zone into the message RAM (+) HAL_FDCAN_GetTxEvent : Get an FDCAN Tx event from the Tx Event FIFO zone into the message RAM (+) HAL_FDCAN_GetHighPriorityMessageStatus : Get high priority message status (+) HAL_FDCAN_GetProtocolStatus : Get protocol status (+) HAL_FDCAN_GetErrorCounters : Get error counter values (+) HAL_FDCAN_IsTxBufferMessagePending : Check if a transmission request is pending on the selected Tx buffer (+) HAL_FDCAN_GetRxFifoFillLevel : Return Rx FIFO fill level (+) HAL_FDCAN_GetTxFifoFreeLevel : Return Tx FIFO free level (+) HAL_FDCAN_IsRestrictedOperationMode : Check if the FDCAN peripheral entered Restricted Operation Mode (+) HAL_FDCAN_ExitRestrictedOperationMode : Exit Restricted Operation Mode @endverbatim * @{ */ /** * @brief Start the FDCAN module. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_Start(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Change FDCAN peripheral state */ hfdcan->State = HAL_FDCAN_STATE_BUSY; /* Request leave initialisation */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Reset the FDCAN ErrorCode */ hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Stop the FDCAN module and enable access to configuration registers. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_Stop(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; if (hfdcan->State == HAL_FDCAN_STATE_BUSY) { /* Request initialisation */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Wait until the INIT bit into CCCR register is set */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Reset counter */ Counter = 0U; /* Exit from Sleep mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Wait until FDCAN exits sleep mode */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Enable configuration change */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE); /* Reset Latest Tx FIFO/Queue Request Buffer Index */ hfdcan->LatestTxFifoQRequest = 0U; /* Change FDCAN peripheral state */ hfdcan->State = HAL_FDCAN_STATE_READY; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Add a message to the Tx FIFO/Queue and activate the corresponding transmission request * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. * @param pTxData pointer to a buffer containing the payload of the Tx frame. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxFifoQ(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxHeaderTypeDef *pTxHeader, uint8_t *pTxData) { uint32_t PutIndex; /* Check function parameters */ assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType)); if (pTxHeader->IdType == FDCAN_STANDARD_ID) { assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU)); } else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ { assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU)); } assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType)); assert_param(IS_FDCAN_DLC(pTxHeader->DataLength)); assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator)); assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch)); assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat)); assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl)); assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU)); if (hfdcan->State == HAL_FDCAN_STATE_BUSY) { /* Check that the Tx FIFO/Queue is not full */ if ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQF) != 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_FULL; return HAL_ERROR; } else { /* Retrieve the Tx FIFO PutIndex */ PutIndex = ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos); /* Add the message to the Tx FIFO/Queue */ FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, PutIndex); /* Activate the corresponding transmission request */ hfdcan->Instance->TXBAR = ((uint32_t)1 << PutIndex); /* Store the Latest Tx FIFO/Queue Request Buffer Index */ hfdcan->LatestTxFifoQRequest = ((uint32_t)1 << PutIndex); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get Tx buffer index of latest Tx FIFO/Queue request * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Tx buffer index of last Tx FIFO/Queue request * - Any value of @arg FDCAN_Tx_location if Tx request has been submitted. * - 0 if no Tx FIFO/Queue request have been submitted. */ uint32_t HAL_FDCAN_GetLatestTxFifoQRequestBuffer(FDCAN_HandleTypeDef *hfdcan) { /* Return Last Tx FIFO/Queue Request Buffer */ return hfdcan->LatestTxFifoQRequest; } /** * @brief Abort transmission request * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param BufferIndex buffer index. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_AbortTxRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex) { /* Check function parameters */ assert_param(IS_FDCAN_TX_LOCATION_LIST(BufferIndex)); if (hfdcan->State == HAL_FDCAN_STATE_BUSY) { /* Add cancellation request */ hfdcan->Instance->TXBCR = BufferIndex; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get an FDCAN frame from the Rx FIFO zone into the message RAM. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxLocation Location of the received message to be read. * This parameter can be a value of @arg FDCAN_Rx_location. * @param pRxHeader pointer to a FDCAN_RxHeaderTypeDef structure. * @param pRxData pointer to a buffer where the payload of the Rx frame will be stored. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetRxMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t RxLocation, FDCAN_RxHeaderTypeDef *pRxHeader, uint8_t *pRxData) { uint32_t *RxAddress; uint8_t *pData; uint32_t ByteCounter; uint32_t GetIndex; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_RX_FIFO(RxLocation)); if (state == HAL_FDCAN_STATE_BUSY) { if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */ { /* Check that the Rx FIFO 0 is not empty */ if ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; return HAL_ERROR; } else { /* Calculate Rx FIFO 0 element address */ GetIndex = ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos); RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO0SA + (GetIndex * SRAMCAN_RF0_SIZE)); } } else /* Rx element is assigned to the Rx FIFO 1 */ { /* Check that the Rx FIFO 1 is not empty */ if ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; return HAL_ERROR; } else { /* Calculate Rx FIFO 1 element address */ GetIndex = ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos); RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO1SA + (GetIndex * SRAMCAN_RF1_SIZE)); } } /* Retrieve IdType */ pRxHeader->IdType = *RxAddress & FDCAN_ELEMENT_MASK_XTD; /* Retrieve Identifier */ if (pRxHeader->IdType == FDCAN_STANDARD_ID) /* Standard ID element */ { pRxHeader->Identifier = ((*RxAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U); } else /* Extended ID element */ { pRxHeader->Identifier = (*RxAddress & FDCAN_ELEMENT_MASK_EXTID); } /* Retrieve RxFrameType */ pRxHeader->RxFrameType = (*RxAddress & FDCAN_ELEMENT_MASK_RTR); /* Retrieve ErrorStateIndicator */ pRxHeader->ErrorStateIndicator = (*RxAddress & FDCAN_ELEMENT_MASK_ESI); /* Increment RxAddress pointer to second word of Rx FIFO element */ RxAddress++; /* Retrieve RxTimestamp */ pRxHeader->RxTimestamp = (*RxAddress & FDCAN_ELEMENT_MASK_TS); /* Retrieve DataLength */ pRxHeader->DataLength = (*RxAddress & FDCAN_ELEMENT_MASK_DLC); /* Retrieve BitRateSwitch */ pRxHeader->BitRateSwitch = (*RxAddress & FDCAN_ELEMENT_MASK_BRS); /* Retrieve FDFormat */ pRxHeader->FDFormat = (*RxAddress & FDCAN_ELEMENT_MASK_FDF); /* Retrieve FilterIndex */ pRxHeader->FilterIndex = ((*RxAddress & FDCAN_ELEMENT_MASK_FIDX) >> 24U); /* Retrieve NonMatchingFrame */ pRxHeader->IsFilterMatchingFrame = ((*RxAddress & FDCAN_ELEMENT_MASK_ANMF) >> 31U); /* Increment RxAddress pointer to payload of Rx FIFO element */ RxAddress++; /* Retrieve Rx payload */ pData = (uint8_t *)RxAddress; for (ByteCounter = 0; ByteCounter < DLCtoBytes[pRxHeader->DataLength >> 16U]; ByteCounter++) { pRxData[ByteCounter] = pData[ByteCounter]; } if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */ { /* Acknowledge the Rx FIFO 0 that the oldest element is read so that it increments the GetIndex */ hfdcan->Instance->RXF0A = GetIndex; } else /* Rx element is assigned to the Rx FIFO 1 */ { /* Acknowledge the Rx FIFO 1 that the oldest element is read so that it increments the GetIndex */ hfdcan->Instance->RXF1A = GetIndex; } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get an FDCAN Tx event from the Tx Event FIFO zone into the message RAM. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTxEvent pointer to a FDCAN_TxEventFifoTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetTxEvent(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxEventFifoTypeDef *pTxEvent) { uint32_t *TxEventAddress; uint32_t GetIndex; HAL_FDCAN_StateTypeDef state = hfdcan->State; if (state == HAL_FDCAN_STATE_BUSY) { /* Check that the Tx event FIFO is not empty */ if ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFFL) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; return HAL_ERROR; } /* Calculate Tx event FIFO element address */ GetIndex = ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFGI) >> FDCAN_TXEFS_EFGI_Pos); TxEventAddress = (uint32_t *)(hfdcan->msgRam.TxEventFIFOSA + (GetIndex * SRAMCAN_TEF_SIZE)); /* Retrieve IdType */ pTxEvent->IdType = *TxEventAddress & FDCAN_ELEMENT_MASK_XTD; /* Retrieve Identifier */ if (pTxEvent->IdType == FDCAN_STANDARD_ID) /* Standard ID element */ { pTxEvent->Identifier = ((*TxEventAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U); } else /* Extended ID element */ { pTxEvent->Identifier = (*TxEventAddress & FDCAN_ELEMENT_MASK_EXTID); } /* Retrieve TxFrameType */ pTxEvent->TxFrameType = (*TxEventAddress & FDCAN_ELEMENT_MASK_RTR); /* Retrieve ErrorStateIndicator */ pTxEvent->ErrorStateIndicator = (*TxEventAddress & FDCAN_ELEMENT_MASK_ESI); /* Increment TxEventAddress pointer to second word of Tx Event FIFO element */ TxEventAddress++; /* Retrieve TxTimestamp */ pTxEvent->TxTimestamp = (*TxEventAddress & FDCAN_ELEMENT_MASK_TS); /* Retrieve DataLength */ pTxEvent->DataLength = (*TxEventAddress & FDCAN_ELEMENT_MASK_DLC); /* Retrieve BitRateSwitch */ pTxEvent->BitRateSwitch = (*TxEventAddress & FDCAN_ELEMENT_MASK_BRS); /* Retrieve FDFormat */ pTxEvent->FDFormat = (*TxEventAddress & FDCAN_ELEMENT_MASK_FDF); /* Retrieve EventType */ pTxEvent->EventType = (*TxEventAddress & FDCAN_ELEMENT_MASK_ET); /* Retrieve MessageMarker */ pTxEvent->MessageMarker = ((*TxEventAddress & FDCAN_ELEMENT_MASK_MM) >> 24U); /* Acknowledge the Tx Event FIFO that the oldest element is read so that it increments the GetIndex */ hfdcan->Instance->TXEFA = GetIndex; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get high priority message status. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param HpMsgStatus pointer to an FDCAN_HpMsgStatusTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetHighPriorityMessageStatus(FDCAN_HandleTypeDef *hfdcan, FDCAN_HpMsgStatusTypeDef *HpMsgStatus) { HpMsgStatus->FilterList = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FLST) >> FDCAN_HPMS_FLST_Pos); HpMsgStatus->FilterIndex = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FIDX) >> FDCAN_HPMS_FIDX_Pos); HpMsgStatus->MessageStorage = (hfdcan->Instance->HPMS & FDCAN_HPMS_MSI); HpMsgStatus->MessageIndex = (hfdcan->Instance->HPMS & FDCAN_HPMS_BIDX); /* Return function status */ return HAL_OK; } /** * @brief Get protocol status. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ProtocolStatus pointer to an FDCAN_ProtocolStatusTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetProtocolStatus(FDCAN_HandleTypeDef *hfdcan, FDCAN_ProtocolStatusTypeDef *ProtocolStatus) { uint32_t StatusReg; /* Read the protocol status register */ StatusReg = READ_REG(hfdcan->Instance->PSR); /* Fill the protocol status structure */ ProtocolStatus->LastErrorCode = (StatusReg & FDCAN_PSR_LEC); ProtocolStatus->DataLastErrorCode = ((StatusReg & FDCAN_PSR_DLEC) >> FDCAN_PSR_DLEC_Pos); ProtocolStatus->Activity = (StatusReg & FDCAN_PSR_ACT); ProtocolStatus->ErrorPassive = ((StatusReg & FDCAN_PSR_EP) >> FDCAN_PSR_EP_Pos); ProtocolStatus->Warning = ((StatusReg & FDCAN_PSR_EW) >> FDCAN_PSR_EW_Pos); ProtocolStatus->BusOff = ((StatusReg & FDCAN_PSR_BO) >> FDCAN_PSR_BO_Pos); ProtocolStatus->RxESIflag = ((StatusReg & FDCAN_PSR_RESI) >> FDCAN_PSR_RESI_Pos); ProtocolStatus->RxBRSflag = ((StatusReg & FDCAN_PSR_RBRS) >> FDCAN_PSR_RBRS_Pos); ProtocolStatus->RxFDFflag = ((StatusReg & FDCAN_PSR_REDL) >> FDCAN_PSR_REDL_Pos); ProtocolStatus->ProtocolException = ((StatusReg & FDCAN_PSR_PXE) >> FDCAN_PSR_PXE_Pos); ProtocolStatus->TDCvalue = ((StatusReg & FDCAN_PSR_TDCV) >> FDCAN_PSR_TDCV_Pos); /* Return function status */ return HAL_OK; } /** * @brief Get error counter values. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ErrorCounters pointer to an FDCAN_ErrorCountersTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetErrorCounters(FDCAN_HandleTypeDef *hfdcan, FDCAN_ErrorCountersTypeDef *ErrorCounters) { uint32_t CountersReg; /* Read the error counters register */ CountersReg = READ_REG(hfdcan->Instance->ECR); /* Fill the error counters structure */ ErrorCounters->TxErrorCnt = ((CountersReg & FDCAN_ECR_TEC) >> FDCAN_ECR_TEC_Pos); ErrorCounters->RxErrorCnt = ((CountersReg & FDCAN_ECR_REC) >> FDCAN_ECR_REC_Pos); ErrorCounters->RxErrorPassive = ((CountersReg & FDCAN_ECR_RP) >> FDCAN_ECR_RP_Pos); ErrorCounters->ErrorLogging = ((CountersReg & FDCAN_ECR_CEL) >> FDCAN_ECR_CEL_Pos); /* Return function status */ return HAL_OK; } /** * @brief Check if a transmission request is pending on the selected Tx buffer. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TxBufferIndex Tx buffer index. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval Status * - 0 : No pending transmission request on TxBufferIndex list * - 1 : Pending transmission request on TxBufferIndex. */ uint32_t HAL_FDCAN_IsTxBufferMessagePending(FDCAN_HandleTypeDef *hfdcan, uint32_t TxBufferIndex) { /* Check function parameters */ assert_param(IS_FDCAN_TX_LOCATION_LIST(TxBufferIndex)); /* Check pending transmission request on the selected buffer */ if ((hfdcan->Instance->TXBRP & TxBufferIndex) == 0U) { return 0; } return 1; } /** * @brief Return Rx FIFO fill level. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo Rx FIFO. * This parameter can be one of the following values: * @arg FDCAN_RX_FIFO0: Rx FIFO 0 * @arg FDCAN_RX_FIFO1: Rx FIFO 1 * @retval Rx FIFO fill level. */ uint32_t HAL_FDCAN_GetRxFifoFillLevel(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo) { uint32_t FillLevel; /* Check function parameters */ assert_param(IS_FDCAN_RX_FIFO(RxFifo)); if (RxFifo == FDCAN_RX_FIFO0) { FillLevel = hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL; } else /* RxFifo == FDCAN_RX_FIFO1 */ { FillLevel = hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL; } /* Return Rx FIFO fill level */ return FillLevel; } /** * @brief Return Tx FIFO free level: number of consecutive free Tx FIFO * elements starting from Tx FIFO GetIndex. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Tx FIFO free level. */ uint32_t HAL_FDCAN_GetTxFifoFreeLevel(FDCAN_HandleTypeDef *hfdcan) { uint32_t FreeLevel; FreeLevel = hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFFL; /* Return Tx FIFO free level */ return FreeLevel; } /** * @brief Check if the FDCAN peripheral entered Restricted Operation Mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Status * - 0 : Normal FDCAN operation. * - 1 : Restricted Operation Mode active. */ uint32_t HAL_FDCAN_IsRestrictedOperationMode(FDCAN_HandleTypeDef *hfdcan) { uint32_t OperationMode; /* Get Operation Mode */ OperationMode = ((hfdcan->Instance->CCCR & FDCAN_CCCR_ASM) >> FDCAN_CCCR_ASM_Pos); return OperationMode; } /** * @brief Exit Restricted Operation Mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ExitRestrictedOperationMode(FDCAN_HandleTypeDef *hfdcan) { HAL_FDCAN_StateTypeDef state = hfdcan->State; if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Exit Restricted Operation mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group4 Interrupts management * @brief Interrupts management * @verbatim ============================================================================== ##### Interrupts management ##### ============================================================================== [..] This section provides functions allowing to: (+) HAL_FDCAN_ConfigInterruptLines : Assign interrupts to either Interrupt line 0 or 1 (+) HAL_FDCAN_ActivateNotification : Enable interrupts (+) HAL_FDCAN_DeactivateNotification : Disable interrupts (+) HAL_FDCAN_IRQHandler : Handles FDCAN interrupt request @endverbatim * @{ */ /** * @brief Assign interrupts to either Interrupt line 0 or 1. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ITList indicates which interrupts group will be assigned to the selected interrupt line. * This parameter can be any combination of @arg FDCAN_Interrupts_Group. * @param InterruptLine Interrupt line. * This parameter can be a value of @arg FDCAN_Interrupt_Line. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t ITList, uint32_t InterruptLine) { HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_IT_GROUP(ITList)); assert_param(IS_FDCAN_IT_LINE(InterruptLine)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Assign list of interrupts to the selected line */ if (InterruptLine == FDCAN_INTERRUPT_LINE0) { CLEAR_BIT(hfdcan->Instance->ILS, ITList); } else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */ { SET_BIT(hfdcan->Instance->ILS, ITList); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable interrupts. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ActiveITs indicates which interrupts will be enabled. * This parameter can be any combination of @arg FDCAN_Interrupts. * @param BufferIndexes Tx Buffer Indexes. * This parameter can be any combination of @arg FDCAN_Tx_location. * This parameter is ignored if ActiveITs does not include one of the following: * - FDCAN_IT_TX_COMPLETE * - FDCAN_IT_TX_ABORT_COMPLETE * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveITs, uint32_t BufferIndexes) { HAL_FDCAN_StateTypeDef state = hfdcan->State; uint32_t ITs_lines_selection; /* Check function parameters */ assert_param(IS_FDCAN_IT(ActiveITs)); if ((ActiveITs & (FDCAN_IT_TX_COMPLETE | FDCAN_IT_TX_ABORT_COMPLETE)) != 0U) { assert_param(IS_FDCAN_TX_LOCATION_LIST(BufferIndexes)); } if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Get interrupts line selection */ ITs_lines_selection = hfdcan->Instance->ILS; /* Enable Interrupt lines */ if ((((ActiveITs & FDCAN_IT_LIST_RX_FIFO0) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO0) == 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_RX_FIFO1) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO1) == 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_SMSG) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_SMSG) == 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_TX_FIFO_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_TX_FIFO_ERROR) == 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_MISC) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_MISC) == 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_BIT_LINE_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_BIT_LINE_ERROR) == 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_PROTOCOL_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_PROTOCOL_ERROR) == 0U))) { /* Enable Interrupt line 0 */ SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); } if ((((ActiveITs & FDCAN_IT_LIST_RX_FIFO0) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO0) != 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_RX_FIFO1) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO1) != 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_SMSG) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_SMSG) != 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_TX_FIFO_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_TX_FIFO_ERROR) != 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_MISC) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_MISC) != 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_BIT_LINE_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_BIT_LINE_ERROR) != 0U)) || \ (((ActiveITs & FDCAN_IT_LIST_PROTOCOL_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_PROTOCOL_ERROR) != 0U))) { /* Enable Interrupt line 1 */ SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); } if ((ActiveITs & FDCAN_IT_TX_COMPLETE) != 0U) { /* Enable Tx Buffer Transmission Interrupt to set TC flag in IR register, but interrupt will only occur if TC is enabled in IE register */ SET_BIT(hfdcan->Instance->TXBTIE, BufferIndexes); } if ((ActiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U) { /* Enable Tx Buffer Cancellation Finished Interrupt to set TCF flag in IR register, but interrupt will only occur if TCF is enabled in IE register */ SET_BIT(hfdcan->Instance->TXBCIE, BufferIndexes); } /* Enable the selected interrupts */ __HAL_FDCAN_ENABLE_IT(hfdcan, ActiveITs); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable interrupts. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param InactiveITs indicates which interrupts will be disabled. * This parameter can be any combination of @arg FDCAN_Interrupts. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveITs) { HAL_FDCAN_StateTypeDef state = hfdcan->State; uint32_t ITs_enabled; uint32_t ITs_lines_selection; /* Check function parameters */ assert_param(IS_FDCAN_IT(InactiveITs)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Disable the selected interrupts */ __HAL_FDCAN_DISABLE_IT(hfdcan, InactiveITs); if ((InactiveITs & FDCAN_IT_TX_COMPLETE) != 0U) { /* Disable Tx Buffer Transmission Interrupts */ CLEAR_REG(hfdcan->Instance->TXBTIE); } if ((InactiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U) { /* Disable Tx Buffer Cancellation Finished Interrupt */ CLEAR_REG(hfdcan->Instance->TXBCIE); } /* Get interrupts enabled and interrupts line selection */ ITs_enabled = hfdcan->Instance->IE; ITs_lines_selection = hfdcan->Instance->ILS; /* Check if some interrupts are still enabled on interrupt line 0 */ if ((((ITs_enabled & FDCAN_IT_LIST_RX_FIFO0) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO0) == 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_RX_FIFO1) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO1) == 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_SMSG) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_SMSG) == 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_TX_FIFO_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_TX_FIFO_ERROR) == 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_MISC) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_MISC) == 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_BIT_LINE_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_BIT_LINE_ERROR) == 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_PROTOCOL_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_PROTOCOL_ERROR) == 0U))) { /* Do nothing */ } else /* no more interrupts enabled on interrupt line 0 */ { /* Disable interrupt line 0 */ CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); } /* Check if some interrupts are still enabled on interrupt line 1 */ if ((((ITs_enabled & FDCAN_IT_LIST_RX_FIFO0) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO0) != 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_RX_FIFO1) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_RX_FIFO1) != 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_SMSG) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_SMSG) != 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_TX_FIFO_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_TX_FIFO_ERROR) != 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_MISC) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_MISC) != 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_BIT_LINE_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_BIT_LINE_ERROR) != 0U)) || \ (((ITs_enabled & FDCAN_IT_LIST_PROTOCOL_ERROR) != 0U) && (((ITs_lines_selection) & FDCAN_IT_GROUP_PROTOCOL_ERROR) != 0U))) { /* Do nothing */ } else /* no more interrupts enabled on interrupt line 1 */ { /* Disable interrupt line 1 */ CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Handles FDCAN interrupt request. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ void HAL_FDCAN_IRQHandler(FDCAN_HandleTypeDef *hfdcan) { uint32_t TxEventFifoITs; uint32_t RxFifo0ITs; uint32_t RxFifo1ITs; uint32_t Errors; uint32_t ErrorStatusITs; uint32_t TransmittedBuffers; uint32_t AbortedBuffers; TxEventFifoITs = hfdcan->Instance->IR & FDCAN_TX_EVENT_FIFO_MASK; TxEventFifoITs &= hfdcan->Instance->IE; RxFifo0ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO0_MASK; RxFifo0ITs &= hfdcan->Instance->IE; RxFifo1ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO1_MASK; RxFifo1ITs &= hfdcan->Instance->IE; Errors = hfdcan->Instance->IR & FDCAN_ERROR_MASK; Errors &= hfdcan->Instance->IE; ErrorStatusITs = hfdcan->Instance->IR & FDCAN_ERROR_STATUS_MASK; ErrorStatusITs &= hfdcan->Instance->IE; /* High Priority Message interrupt management *******************************/ if (__HAL_FDCAN_GET_FLAG(hfdcan, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG) != 0U) { if (__HAL_FDCAN_GET_IT_SOURCE(hfdcan, FDCAN_IT_RX_HIGH_PRIORITY_MSG) != 0U) { /* Clear the High Priority Message flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->HighPriorityMessageCallback(hfdcan); #else /* High Priority Message Callback */ HAL_FDCAN_HighPriorityMessageCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Transmission Abort interrupt management **********************************/ if (__HAL_FDCAN_GET_FLAG(hfdcan, FDCAN_FLAG_TX_ABORT_COMPLETE) != 0U) { if (__HAL_FDCAN_GET_IT_SOURCE(hfdcan, FDCAN_IT_TX_ABORT_COMPLETE) != 0U) { /* List of aborted monitored buffers */ AbortedBuffers = hfdcan->Instance->TXBCF; AbortedBuffers &= hfdcan->Instance->TXBCIE; /* Clear the Transmission Cancellation flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_ABORT_COMPLETE); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxBufferAbortCallback(hfdcan, AbortedBuffers); #else /* Transmission Cancellation Callback */ HAL_FDCAN_TxBufferAbortCallback(hfdcan, AbortedBuffers); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Tx event FIFO interrupts management **************************************/ if (TxEventFifoITs != 0U) { /* Clear the Tx Event FIFO flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, TxEventFifoITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxEventFifoCallback(hfdcan, TxEventFifoITs); #else /* Tx Event FIFO Callback */ HAL_FDCAN_TxEventFifoCallback(hfdcan, TxEventFifoITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Rx FIFO 0 interrupts management ******************************************/ if (RxFifo0ITs != 0U) { /* Clear the Rx FIFO 0 flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo0ITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->RxFifo0Callback(hfdcan, RxFifo0ITs); #else /* Rx FIFO 0 Callback */ HAL_FDCAN_RxFifo0Callback(hfdcan, RxFifo0ITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Rx FIFO 1 interrupts management ******************************************/ if (RxFifo1ITs != 0U) { /* Clear the Rx FIFO 1 flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo1ITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->RxFifo1Callback(hfdcan, RxFifo1ITs); #else /* Rx FIFO 1 Callback */ HAL_FDCAN_RxFifo1Callback(hfdcan, RxFifo1ITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Tx FIFO empty interrupt management ***************************************/ if (__HAL_FDCAN_GET_FLAG(hfdcan, FDCAN_FLAG_TX_FIFO_EMPTY) != 0U) { if (__HAL_FDCAN_GET_IT_SOURCE(hfdcan, FDCAN_IT_TX_FIFO_EMPTY) != 0U) { /* Clear the Tx FIFO empty flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_FIFO_EMPTY); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxFifoEmptyCallback(hfdcan); #else /* Tx FIFO empty Callback */ HAL_FDCAN_TxFifoEmptyCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Transmission Complete interrupt management *******************************/ if (__HAL_FDCAN_GET_FLAG(hfdcan, FDCAN_FLAG_TX_COMPLETE) != 0U) { if (__HAL_FDCAN_GET_IT_SOURCE(hfdcan, FDCAN_IT_TX_COMPLETE) != 0U) { /* List of transmitted monitored buffers */ TransmittedBuffers = hfdcan->Instance->TXBTO; TransmittedBuffers &= hfdcan->Instance->TXBTIE; /* Clear the Transmission Complete flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_COMPLETE); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxBufferCompleteCallback(hfdcan, TransmittedBuffers); #else /* Transmission Complete Callback */ HAL_FDCAN_TxBufferCompleteCallback(hfdcan, TransmittedBuffers); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Timestamp Wraparound interrupt management ********************************/ if (__HAL_FDCAN_GET_FLAG(hfdcan, FDCAN_FLAG_TIMESTAMP_WRAPAROUND) != 0U) { if (__HAL_FDCAN_GET_IT_SOURCE(hfdcan, FDCAN_IT_TIMESTAMP_WRAPAROUND) != 0U) { /* Clear the Timestamp Wraparound flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMESTAMP_WRAPAROUND); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TimestampWraparoundCallback(hfdcan); #else /* Timestamp Wraparound Callback */ HAL_FDCAN_TimestampWraparoundCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Timeout Occurred interrupt management ************************************/ if (__HAL_FDCAN_GET_FLAG(hfdcan, FDCAN_FLAG_TIMEOUT_OCCURRED) != 0U) { if (__HAL_FDCAN_GET_IT_SOURCE(hfdcan, FDCAN_IT_TIMEOUT_OCCURRED) != 0U) { /* Clear the Timeout Occurred flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMEOUT_OCCURRED); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TimeoutOccurredCallback(hfdcan); #else /* Timeout Occurred Callback */ HAL_FDCAN_TimeoutOccurredCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Message RAM access failure interrupt management **************************/ if (__HAL_FDCAN_GET_FLAG(hfdcan, FDCAN_FLAG_RAM_ACCESS_FAILURE) != 0U) { if (__HAL_FDCAN_GET_IT_SOURCE(hfdcan, FDCAN_IT_RAM_ACCESS_FAILURE) != 0U) { /* Clear the Message RAM access failure flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RAM_ACCESS_FAILURE); /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_RAM_ACCESS; } } /* Error Status interrupts management ***************************************/ if (ErrorStatusITs != 0U) { /* Clear the Error flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, ErrorStatusITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->ErrorStatusCallback(hfdcan, ErrorStatusITs); #else /* Error Status Callback */ HAL_FDCAN_ErrorStatusCallback(hfdcan, ErrorStatusITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Error interrupts management **********************************************/ if (Errors != 0U) { /* Clear the Error flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, Errors); /* Update error code */ hfdcan->ErrorCode |= Errors; } if (hfdcan->ErrorCode != HAL_FDCAN_ERROR_NONE) { #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->ErrorCallback(hfdcan); #else /* Error Callback */ HAL_FDCAN_ErrorCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group5 Callback functions * @brief FDCAN Callback functions * @verbatim ============================================================================== ##### Callback functions ##### ============================================================================== [..] This subsection provides the following callback functions: (+) HAL_FDCAN_TxEventFifoCallback (+) HAL_FDCAN_RxFifo0Callback (+) HAL_FDCAN_RxFifo1Callback (+) HAL_FDCAN_TxFifoEmptyCallback (+) HAL_FDCAN_TxBufferCompleteCallback (+) HAL_FDCAN_TxBufferAbortCallback (+) HAL_FDCAN_HighPriorityMessageCallback (+) HAL_FDCAN_TimestampWraparoundCallback (+) HAL_FDCAN_TimeoutOccurredCallback (+) HAL_FDCAN_ErrorCallback (+) HAL_FDCAN_ErrorStatusCallback @endverbatim * @{ */ /** * @brief Tx Event callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TxEventFifoITs indicates which Tx Event FIFO interrupts are signalled. * This parameter can be any combination of @arg FDCAN_Tx_Event_Fifo_Interrupts. * @retval None */ __weak void HAL_FDCAN_TxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TxEventFifoITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(TxEventFifoITs); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxEventFifoCallback could be implemented in the user file */ } /** * @brief Rx FIFO 0 callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo0ITs indicates which Rx FIFO 0 interrupts are signalled. * This parameter can be any combination of @arg FDCAN_Rx_Fifo0_Interrupts. * @retval None */ __weak void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(RxFifo0ITs); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_RxFifo0Callback could be implemented in the user file */ } /** * @brief Rx FIFO 1 callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo1ITs indicates which Rx FIFO 1 interrupts are signalled. * This parameter can be any combination of @arg FDCAN_Rx_Fifo1_Interrupts. * @retval None */ __weak void HAL_FDCAN_RxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo1ITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(RxFifo1ITs); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_RxFifo1Callback could be implemented in the user file */ } /** * @brief Tx FIFO Empty callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_TxFifoEmptyCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxFifoEmptyCallback could be implemented in the user file */ } /** * @brief Transmission Complete callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param BufferIndexes Indexes of the transmitted buffers. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval None */ __weak void HAL_FDCAN_TxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(BufferIndexes); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxBufferCompleteCallback could be implemented in the user file */ } /** * @brief Transmission Cancellation callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param BufferIndexes Indexes of the aborted buffers. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval None */ __weak void HAL_FDCAN_TxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(BufferIndexes); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxBufferAbortCallback could be implemented in the user file */ } /** * @brief Timestamp Wraparound callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_TimestampWraparoundCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_TimestampWraparoundCallback could be implemented in the user file */ } /** * @brief Timeout Occurred callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_TimeoutOccurredCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_TimeoutOccurredCallback could be implemented in the user file */ } /** * @brief High Priority Message callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_HighPriorityMessageCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_HighPriorityMessageCallback could be implemented in the user file */ } /** * @brief Error callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_ErrorCallback could be implemented in the user file */ } /** * @brief Error status callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ErrorStatusITs indicates which Error Status interrupts are signaled. * This parameter can be any combination of @arg FDCAN_Error_Status_Interrupts. * @retval None */ __weak void HAL_FDCAN_ErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ErrorStatusITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(ErrorStatusITs); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_FDCAN_ErrorStatusCallback could be implemented in the user file */ } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group6 Peripheral State functions * @brief FDCAN Peripheral State functions * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection provides functions allowing to : (+) HAL_FDCAN_GetState() : Return the FDCAN state. (+) HAL_FDCAN_GetError() : Return the FDCAN error code if any. @endverbatim * @{ */ /** * @brief Return the FDCAN state * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL state */ HAL_FDCAN_StateTypeDef HAL_FDCAN_GetState(FDCAN_HandleTypeDef *hfdcan) { /* Return FDCAN state */ return hfdcan->State; } /** * @brief Return the FDCAN error code * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval FDCAN Error Code */ uint32_t HAL_FDCAN_GetError(FDCAN_HandleTypeDef *hfdcan) { /* Return FDCAN error code */ return hfdcan->ErrorCode; } /** * @} */ /** * @} */ /** @addtogroup FDCAN_Private_Functions * @{ */ /** * @brief Calculate each RAM block start address and size * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval none */ static void FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan) { uint32_t RAMcounter; uint32_t SramCanInstanceBase = SRAMCAN_BASE; #if defined(FDCAN2) if (hfdcan->Instance == FDCAN2) { SramCanInstanceBase += SRAMCAN_SIZE; } #endif /* FDCAN2 */ /* Standard filter list start address */ hfdcan->msgRam.StandardFilterSA = SramCanInstanceBase + SRAMCAN_FLSSA; /* Standard filter elements number */ MODIFY_REG(hfdcan->Instance->RXGFC, FDCAN_RXGFC_LSS, (hfdcan->Init.StdFiltersNbr << FDCAN_RXGFC_LSS_Pos)); /* Extended filter list start address */ hfdcan->msgRam.ExtendedFilterSA = SramCanInstanceBase + SRAMCAN_FLESA; /* Extended filter elements number */ MODIFY_REG(hfdcan->Instance->RXGFC, FDCAN_RXGFC_LSE, (hfdcan->Init.ExtFiltersNbr << FDCAN_RXGFC_LSE_Pos)); /* Rx FIFO 0 start address */ hfdcan->msgRam.RxFIFO0SA = SramCanInstanceBase + SRAMCAN_RF0SA; /* Rx FIFO 1 start address */ hfdcan->msgRam.RxFIFO1SA = SramCanInstanceBase + SRAMCAN_RF1SA; /* Tx event FIFO start address */ hfdcan->msgRam.TxEventFIFOSA = SramCanInstanceBase + SRAMCAN_TEFSA; /* Tx FIFO/queue start address */ hfdcan->msgRam.TxFIFOQSA = SramCanInstanceBase + SRAMCAN_TFQSA; /* Flush the allocated Message RAM area */ for (RAMcounter = SramCanInstanceBase; RAMcounter < (SramCanInstanceBase + SRAMCAN_SIZE); RAMcounter += 4U) { *(uint32_t *)(RAMcounter) = 0x00000000U; } } /** * @brief Copy Tx message to the message RAM. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. * @param pTxData pointer to a buffer containing the payload of the Tx frame. * @param BufferIndex index of the buffer to be configured. * @retval none */ static void FDCAN_CopyMessageToRAM(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxHeaderTypeDef *pTxHeader, uint8_t *pTxData, uint32_t BufferIndex) { uint32_t TxElementW1; uint32_t TxElementW2; uint32_t *TxAddress; uint32_t ByteCounter; /* Build first word of Tx header element */ if (pTxHeader->IdType == FDCAN_STANDARD_ID) { TxElementW1 = (pTxHeader->ErrorStateIndicator | FDCAN_STANDARD_ID | pTxHeader->TxFrameType | (pTxHeader->Identifier << 18U)); } else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ { TxElementW1 = (pTxHeader->ErrorStateIndicator | FDCAN_EXTENDED_ID | pTxHeader->TxFrameType | pTxHeader->Identifier); } /* Build second word of Tx header element */ TxElementW2 = ((pTxHeader->MessageMarker << 24U) | pTxHeader->TxEventFifoControl | pTxHeader->FDFormat | pTxHeader->BitRateSwitch | pTxHeader->DataLength); /* Calculate Tx element address */ TxAddress = (uint32_t *)(hfdcan->msgRam.TxFIFOQSA + (BufferIndex * SRAMCAN_TFQ_SIZE)); /* Write Tx element header to the message RAM */ *TxAddress = TxElementW1; TxAddress++; *TxAddress = TxElementW2; TxAddress++; /* Write Tx payload to the message RAM */ for (ByteCounter = 0; ByteCounter < DLCtoBytes[pTxHeader->DataLength >> 16U]; ByteCounter += 4U) { *TxAddress = (((uint32_t)pTxData[ByteCounter + 3U] << 24U) | ((uint32_t)pTxData[ByteCounter + 2U] << 16U) | ((uint32_t)pTxData[ByteCounter + 1U] << 8U) | (uint32_t)pTxData[ByteCounter]); TxAddress++; } } /** * @} */ #endif /* HAL_FDCAN_MODULE_ENABLED */ /** * @} */ /** * @} */ #endif /* FDCAN1 */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/