stm32cubeide/CDC/Drivers/STM32G0xx_HAL_Driver/Src/stm32g0xx_hal_rcc.c
Jochen Friedrich 66c5a26d69 Initial commit
2021-01-01 14:06:20 +01:00

1437 lines
53 KiB
C

/**
******************************************************************************
* @file stm32g0xx_hal_rcc.c
* @author MCD Application Team
* @brief RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Reset and Clock Control (RCC) peripheral:
* + Initialization and de-initialization functions
* + Peripheral Control functions
*
@verbatim
==============================================================================
##### RCC specific features #####
==============================================================================
[..]
After reset the device is running from High Speed Internal oscillator
(from 8 MHz to reach 16MHz) with Flash 0 wait state. Flash prefetch buffer,
D-Cache and I-Cache are disabled, and all peripherals are off except internal
SRAM, Flash and JTAG.
(+) There is no prescaler on High speed (AHB) and Low speed (APB) buses:
all peripherals mapped on these buses are running at HSI speed.
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
(+) All GPIOs are in analog mode, except the JTAG pins which
are assigned to be used for debug purpose.
[..]
Once the device started from reset, the user application has to:
(+) Configure the clock source to be used to drive the System clock
(if the application needs higher frequency/performance)
(+) Configure the System clock frequency and Flash settings
(+) Configure the AHB and APB buses prescalers
(+) Enable the clock for the peripheral(s) to be used
(+) Configure the clock source(s) for peripherals which clocks are not
derived from the System clock (RTC, ADC, RNG, HSTIM)
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2018 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @defgroup RCC RCC
* @brief RCC HAL module driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCC_Private_Constants RCC Private Constants
* @{
*/
#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
#define HSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define LSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#if defined(RCC_HSI48_SUPPORT)
#define HSI48_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#endif /* RCC_HSI48_SUPPORT */
#define CLOCKSWITCH_TIMEOUT_VALUE (5000U) /* 5 s */
#define PLLSOURCE_NONE (0U)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCC_Private_Macros RCC Private Macros
* @{
*/
#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
#define MCO1_GPIO_PORT GPIOA
#define MCO1_PIN GPIO_PIN_8
#if defined(RCC_MCO2_SUPPORT)
#define MCO2_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
#define MCO2_GPIO_PORT GPIOA
#define MCO2_PIN GPIO_PIN_10
#endif /* RCC_MCO2_SUPPORT */
#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
(MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__)))
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_Private_Variables RCC Private Variables
* @{
*/
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCC_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
This section provides functions allowing to configure the internal and external oscillators
(HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB)
[..] Internal/external clock and PLL configuration
(+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
the PLL as System clock source.
(+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
clock source.
(+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or
through the PLL as System clock source. Can be used also optionally as RTC clock source.
(+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source.
(+) PLL (clocked by HSI, HSE) providing up to three independent output clocks:
(++) The first output (R) is used to generate the high speed system clock (up to 64MHz).
(++) The second output(Q) is used to generate the clock for the random analog generator and HStim.
(++) The Third output (P) is used to generate the clock for the Analog to Digital Converter and I2S.
(+) CSS (Clock security system): once enabled, if a HSE or LSE clock failure occurs
(HSE used directly or through PLL as System clock source), the System clock
is automatically switched respectively to HSI or LSI and an interrupt is generated
if enabled. The interrupt is linked to the Cortex-M0+ NMI (Non-Maskable Interrupt)
exception vector.
(+) MCOx (microcontroller clock output):
(++) MCO1 used to output LSI, HSI48(*), HSI, LSE, HSE or main PLL clock (through a configurable prescaler) on PA8 pin.
(++) MCO2(*) used to output LSI, HSI48(*), HSI, LSE, HSE, main PLLR clock, PLLQ clock, PLLP clock, RTC clock or RTC_Wakeup (through a configurable prescaler) on PA10 pin.
(*) available on certain devices only
[..] System, AHB and APB buses clocks configuration
(+) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
HSE, LSI, LSE and main PLL.
The AHB clock (HCLK) is derived from System clock through configurable
prescaler and used to clock the CPU, memory and peripherals mapped
on AHB bus (DMA, GPIO...).and APB (PCLK1) clock is derived
from AHB clock through configurable prescalers and used to clock
the peripherals mapped on these buses. You can use
"@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
(+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
divided by 2 to 31.
You have to use @ref __HAL_RCC_RTC_ENABLE() and @ref HAL_RCCEx_PeriphCLKConfig() function
to configure this clock.
(+@) RNG(*) requires a frequency equal or lower than 48 MHz.
This clock is derived from the main PLL or HSI or System clock.
(*) available on certain devices only
(+@) IWDG clock which is always the LSI clock.
(+) The maximum frequency of the SYSCLK, HCLK, PCLK is 64 MHz.
Depending on the device voltage range, the maximum frequency should be
adapted accordingly.
@endverbatim
(++) Table 1. HCLK clock frequency.
(++) +-------------------------------------------------------+
(++) | Latency | HCLK clock frequency (MHz) |
(++) | |-------------------------------------|
(++) | | voltage range 1 | voltage range 2 |
(++) | | 1.2 V | 1.0 V |
(++) |-----------------|------------------|------------------|
(++) |0WS(1 CPU cycles)| HCLK <= 24 | HCLK <= 8 |
(++) |-----------------|------------------|------------------|
(++) |1WS(2 CPU cycles)| HCLK <= 48 | HCLK <= 16 |
(++) |-----------------|------------------|------------------|
(++) |2WS(3 CPU cycles)| HCLK <= 64 | - |
(++) |-----------------|------------------|------------------|
* @{
*/
/**
* @brief Reset the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - HSI ON and used as system clock source
* - HSE, PLL OFF
* - AHB and APB prescaler set to 1.
* - CSS, MCO1 OFF
* - All interrupts disabled
* @note This function does not modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCC_DeInit(void)
{
uint32_t tickstart;
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Set HSION bit to the reset value */
SET_BIT(RCC->CR, RCC_CR_HSION);
/* Wait till HSI is ready */
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set HSITRIM[6:0] bits to the reset value */
RCC->ICSCR = RCC_ICSCR_HSITRIM_6;
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Reset CFGR register (HSI is selected as system clock source) */
RCC->CFGR = 0x00000000u;
/* Wait till HSI is ready */
while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U)
{
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Clear CR register in 2 steps: first to clear HSEON in case bypass was enabled */
RCC->CR = RCC_CR_HSION;
/* Then again to HSEBYP in case bypass was enabled */
RCC->CR = RCC_CR_HSION;
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* once PLL is OFF, reset PLLCFGR register to default value */
RCC->PLLCFGR = RCC_PLLCFGR_PLLN_4;
/* Disable all interrupts */
RCC->CIER = 0x00000000u;
/* Clear all flags */
RCC->CICR = 0xFFFFFFFFu;
/* Update the SystemCoreClock global variable */
SystemCoreClock = HSI_VALUE;
/* Adapt Systick interrupt period */
if (HAL_InitTick(uwTickPrio) != HAL_OK)
{
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
/**
* @brief Initialize the RCC Oscillators according to the specified parameters in the
* @ref RCC_OscInitTypeDef.
* @param RCC_OscInitStruct pointer to a @ref RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC Oscillators.
* @note The PLL is not disabled when used as system clock.
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
* supported by this function. User should request a transition to HSE Off
* first and then to HSE On or HSE Bypass.
* @note Transition LSE Bypass to LSE On and LSE On to LSE Bypass are not
* supported by this function. User should request a transition to LSE Off
* first and then to LSE On or LSE Bypass.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
uint32_t tickstart;
uint32_t temp_sysclksrc;
uint32_t temp_pllckcfg;
/* Check Null pointer */
if (RCC_OscInitStruct == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
/*------------------------------- HSE Configuration ------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
temp_pllckcfg = __HAL_RCC_GET_PLL_OSCSOURCE();
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
if (((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_pllckcfg == RCC_PLLSOURCE_HSE)) || (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE))
{
if ((READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
{
return HAL_ERROR;
}
}
else
{
/* Set the new HSE configuration ---------------------------------------*/
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
/* Check the HSE State */
if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSE is ready */
while (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSE is disabled */
while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*----------------------------- HSI Configuration --------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
{
/* Check the parameters */
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
assert_param(IS_RCC_HSIDIV(RCC_OscInitStruct->HSIDiv));
/* Check if HSI16 is used as system clock or as PLL source when PLL is selected as system clock */
temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
temp_pllckcfg = __HAL_RCC_GET_PLL_OSCSOURCE();
if (((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_pllckcfg == RCC_PLLSOURCE_HSI)) || (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI))
{
/* When HSI is used as system clock or as PLL input clock it can not be disabled */
if ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
{
return HAL_ERROR;
}
/* Otherwise, just the calibration is allowed */
else
{
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI)
{
/* Adjust the HSI16 division factor */
__HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIDiv);
/* Update the SystemCoreClock global variable with HSISYS value */
SystemCoreClock = (HSI_VALUE / (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV)) >> RCC_CR_HSIDIV_Pos)));
}
/* Adapt Systick interrupt period */
if (HAL_InitTick(uwTickPrio) != HAL_OK)
{
return HAL_ERROR;
}
}
}
else
{
/* Check the HSI State */
if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
{
/* Configure the HSI16 division factor */
__HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIDiv);
/* Enable the Internal High Speed oscillator (HSI16). */
__HAL_RCC_HSI_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
else
{
/* Disable the Internal High Speed oscillator (HSI16). */
__HAL_RCC_HSI_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI is disabled */
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*------------------------------ LSI Configuration -------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
{
/* Check the parameters */
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
/* Check if LSI is used as system clock */
if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSI)
{
/* When LSI is used as system clock it will not be disabled */
if ((((RCC->CSR) & RCC_CSR_LSIRDY) != 0U) && (RCC_OscInitStruct->LSIState == RCC_LSI_OFF))
{
return HAL_ERROR;
}
}
else
{
/* Check the LSI State */
if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
{
/* Enable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI is ready */
while (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI is disabled */
while (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*------------------------------ LSE Configuration -------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
{
FlagStatus pwrclkchanged = RESET;
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
/* When the LSE is used as system clock, it is not allowed disable it */
if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSE)
{
if ((((RCC->BDCR) & RCC_BDCR_LSERDY) != 0U) && (RCC_OscInitStruct->LSEState == RCC_LSE_OFF))
{
return HAL_ERROR;
}
}
else
{
/* Update LSE configuration in Backup Domain control register */
/* Requires to enable write access to Backup Domain of necessary */
if (__HAL_RCC_PWR_IS_CLK_DISABLED() != 0U)
{
__HAL_RCC_PWR_CLK_ENABLE();
pwrclkchanged = SET;
}
if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
{
/* Enable write access to Backup domain */
SET_BIT(PWR->CR1, PWR_CR1_DBP);
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
{
if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* Set the new LSE configuration -----------------------------------------*/
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
/* Check the LSE State */
if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is disabled */
while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* Restore clock configuration if changed */
if (pwrclkchanged == SET)
{
__HAL_RCC_PWR_CLK_DISABLE();
}
}
}
#if defined(RCC_HSI48_SUPPORT)
/*------------------------------ HSI48 Configuration -----------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
{
/* Check the parameters */
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
/* Check the LSI State */
if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
{
/* Enable the Internal Low Speed oscillator (HSI48). */
__HAL_RCC_HSI48_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI48 is ready */
while (READ_BIT(RCC->CR, RCC_CR_HSI48RDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal Low Speed oscillator (HSI48). */
__HAL_RCC_HSI48_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI48 is disabled */
while (READ_BIT(RCC->CR, RCC_CR_HSI48RDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
#endif /* RCC_HSI48_SUPPORT */
/*-------------------------------- PLL Configuration -----------------------*/
/* Check the parameters */
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
{
/* Check if the PLL is used as system clock or not */
if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
{
/* Check the parameters */
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
#if defined(RCC_PLLQ_SUPPORT)
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
#endif /* RCC_PLLQ_SUPPORT */
assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Configure the main PLL clock source, multiplication and division factors. */
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
RCC_OscInitStruct->PLL.PLLM,
RCC_OscInitStruct->PLL.PLLN,
RCC_OscInitStruct->PLL.PLLP,
#if defined(RCC_PLLQ_SUPPORT)
RCC_OscInitStruct->PLL.PLLQ,
#endif /* RCC_PLLQ_SUPPORT */
RCC_OscInitStruct->PLL.PLLR);
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
/* Enable PLLR Clock output. */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLLRCLK);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Disable all PLL outputs to save power */
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PLLSOURCE_NONE);
#if defined(RCC_PLLQ_SUPPORT)
__HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLQEN | RCC_PLLCFGR_PLLREN);
#else
__HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLREN);
#endif /* RCC_PLLQ_SUPPORT */
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is disabled */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
else
{
/* Check if there is a request to disable the PLL used as System clock source */
if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF)
{
return HAL_ERROR;
}
else
{
/* Do not return HAL_ERROR if request repeats the current configuration */
temp_pllckcfg = RCC->PLLCFGR;
if ((READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) ||
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos)) ||
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) ||
#if defined (RCC_PLLQ_SUPPORT)
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ) ||
#endif /* RCC_PLLQ_SUPPORT */
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLR) != RCC_OscInitStruct->PLL.PLLR))
{
return HAL_ERROR;
}
}
}
}
return HAL_OK;
}
/**
* @brief Initialize the CPU, AHB and APB buses clocks according to the specified
* parameters in the RCC_ClkInitStruct.
* @param RCC_ClkInitStruct pointer to a @ref RCC_ClkInitTypeDef structure that
* contains the configuration information for the RCC peripheral.
* @param FLatency FLASH Latency
* This parameter can be one of the following values:
* @arg FLASH_LATENCY_0 FLASH 0 Latency cycle
* @arg FLASH_LATENCY_1 FLASH 1 Latency cycle
*
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
* and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
*
* @note The HSI is used by default as system clock source after
* startup from Reset, wake-up from STANDBY mode. After restart from Reset,
* the HSI frequency is set to 8 Mhz, then it reaches its default value 16 MHz.
*
* @note The HSI can be selected as system clock source after
* from STOP modes or in case of failure of the HSE used directly or indirectly
* as system clock (if the Clock Security System CSS is enabled).
*
* @note The LSI can be selected as system clock source after
* in case of failure of the LSE used directly or indirectly
* as system clock (if the Clock Security System LSECSS is enabled).
*
* @note A switch from one clock source to another occurs only if the target
* clock source is ready (clock stable after startup delay or PLL locked).
* If a clock source which is not yet ready is selected, the switch will
* occur when the clock source is ready.
*
* @note You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
* currently used as system clock source.
*
* @note Depending on the device voltage range, the software has to set correctly
* HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
* (for more details refer to section above "Initialization/de-initialization functions")
* @retval None
*/
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
{
uint32_t tickstart;
/* Check Null pointer */
if (RCC_ClkInitStruct == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
assert_param(IS_FLASH_LATENCY(FLatency));
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
must be correctly programmed according to the frequency of the FLASH clock
(HCLK) and the supply voltage of the device. */
/* Increasing the number of wait states because of higher CPU frequency */
if (FLatency > __HAL_FLASH_GET_LATENCY())
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by polling the FLASH_ACR register */
tickstart = HAL_GetTick();
while ((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
{
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*-------------------------- HCLK Configuration --------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
{
/* Set the highest APB divider in order to ensure that we do not go through
a non-spec phase whatever we decrease or increase HCLK. */
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_HCLK_DIV16);
}
/* Set the new HCLK clock divider */
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
}
/*------------------------- SYSCLK Configuration ---------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
{
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
/* HSE is selected as System Clock Source */
if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
{
/* Check the HSE ready flag */
if (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
{
return HAL_ERROR;
}
}
/* PLL is selected as System Clock Source */
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
/* Check the PLL ready flag */
if (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
{
return HAL_ERROR;
}
}
/* HSI is selected as System Clock Source */
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI)
{
/* Check the HSI ready flag */
if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
{
return HAL_ERROR;
}
}
/* LSI is selected as System Clock Source */
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_LSI)
{
/* Check the LSI ready flag */
if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U)
{
return HAL_ERROR;
}
}
/* LSE is selected as System Clock Source */
else
{
/* Check the LSE ready flag */
if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
{
return HAL_ERROR;
}
}
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
/* Get Start Tick*/
tickstart = HAL_GetTick();
while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
{
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* Decreasing the number of wait states because of lower CPU frequency */
if (FLatency < __HAL_FLASH_GET_LATENCY())
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by polling the FLASH_ACR register */
tickstart = HAL_GetTick();
while ((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
{
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*-------------------------- PCLK1 Configuration ---------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
{
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider);
}
/* Update the SystemCoreClock global variable */
SystemCoreClock = (HAL_RCC_GetSysClockFreq() >> ((AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos]) & 0x1FU));
/* Configure the source of time base considering new system clocks settings*/
return HAL_InitTick(uwTickPrio);
}
/**
* @}
*/
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
* @brief RCC clocks control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to:
(+) Output clock to MCO pin.
(+) Retrieve current clock frequencies.
(+) Enable the Clock Security System.
@endverbatim
* @{
*/
/**
* @brief Select the clock source to output on MCO1 pin(PA8) or MC02 pin (PA10)(*).
* @note PA8, PA10(*) should be configured in alternate function mode.
* @param RCC_MCOx specifies the output direction for the clock source.
* For STM32G0xx family this parameter can have only one value:
* @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
* @arg @ref RCC_MCO2 Clock source to output on MCO2 pin(PA10)(*).
* @param RCC_MCOSource specifies the clock source to output.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO
* @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48(*)
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
* @arg @ref RCC_MCO1SOURCE_PLLCLK main PLLR clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_PLLPCLK PLLP clock selected as MCO1 source(*)
* @arg @ref RCC_MCO1SOURCE_PLLQCLK PLLQ clock selected as MCO1 source(*)
* @arg @ref RCC_MCO1SOURCE_RTCCLK RTC clock selected as MCO1 source(*)
* @arg @ref RCC_MCO1SOURCE_RTC_WKUP RTC_Wakeup selected as MCO1 source(*)
* @arg @ref RCC_MCO2SOURCE_NOCLOCK MCO2 output disabled, no clock on MCO2(*)
* @arg @ref RCC_MCO2SOURCE_SYSCLK system clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_HSI48 HSI48 clock selected as MCO2 source for devices with HSI48(*)
* @arg @ref RCC_MCO2SOURCE_HSI HSI clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_HSE HSE clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_PLLCLK main PLLR clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_LSI LSI clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_LSE LSE clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_PLLPCLK PLLP clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_PLLQCLK PLLQ clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_RTCCLK RTC clock selected as MCO2 source(*)
* @arg @ref RCC_MCO2SOURCE_RTC_WKUP RTC_Wakeup selected as MCO2 source(*)
* @param RCC_MCODiv specifies the MCO prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock
* @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
* @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
* @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
* @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
* @arg @ref RCC_MCODIV_32 division by 32 applied to MCO clock
* @arg @ref RCC_MCODIV_64 division by 64 applied to MCO clock
* @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock
* @arg @ref RCC_MCO2DIV_1 no division applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_2 division by 2 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_4 division by 4 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_8 division by 8 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_16 division by 16 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_32 division by 32 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_64 division by 64 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_128 division by 128 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_256 division by 256 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_512 division by 512 applied to MCO2 clock(*)
* @arg @ref RCC_MCO2DIV_1024 division by 1024 applied to MCO2 clock(*)
*
* (*) Feature not available on all devices of the family
* @retval None
*/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Check the parameters */
assert_param(IS_RCC_MCO(RCC_MCOx));
/* Common GPIO init parameters */
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Pull = GPIO_NOPULL;
if (RCC_MCOx == RCC_MCO1)
{
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
/* MCO1 Clock Enable */
MCO1_CLK_ENABLE();
/* Configure the MCO1 pin in alternate function mode */
GPIO_InitStruct.Pin = MCO1_PIN;
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv));
}
#if defined(RCC_MCO2_SUPPORT)
else if (RCC_MCOx == RCC_MCO2)
{
assert_param(IS_RCC_MCO2DIV(RCC_MCODiv));
assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
/* MCO2 Clock Enable */
MCO2_CLK_ENABLE();
/* Configure the MCO2 pin in alternate function mode */
GPIO_InitStruct.Pin = MCO2_PIN;
GPIO_InitStruct.Alternate = GPIO_AF3_MCO2;
HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2SEL | RCC_CFGR_MCO2PRE), (RCC_MCOSource | RCC_MCODiv));
}
#endif /* RCC_MCO2_SUPPORT */
}
/**
* @brief Return the SYSCLK frequency.
*
* @note The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE/HSIDIV(*)
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
* @note If SYSCLK source is LSI, function returns values based on LSI_VALUE(***)
* @note If SYSCLK source is LSE, function returns values based on LSE_VALUE(****)
* @note (*) HSI_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (**) HSE_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
* @note (***) LSE_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
* 32768 Hz).
* @note (****) LSI_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
* 32000 Hz).
*
* @note The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @note This function can be used by the user application to compute the
* baudrate for the communication peripherals or configure other parameters.
*
* @note Each time SYSCLK changes, this function must be called to update the
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
*
*
* @retval SYSCLK frequency
*/
uint32_t HAL_RCC_GetSysClockFreq(void)
{
uint32_t pllvco, pllsource, pllr, pllm, hsidiv;
uint32_t sysclockfreq;
if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
{
/* HSISYS can be derived for HSI16 */
hsidiv = (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV)) >> RCC_CR_HSIDIV_Pos));
/* HSI used as system clock source */
sysclockfreq = (HSI_VALUE / hsidiv);
}
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
{
/* HSE used as system clock source */
sysclockfreq = HSE_VALUE;
}
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
/* PLL used as system clock source */
/* PLL_VCO = ((HSE_VALUE or HSI_VALUE)/ PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ;
switch (pllsource)
{
case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);
break;
case RCC_PLLSOURCE_HSI: /* HSI16 used as PLL clock source */
default: /* HSI16 used as PLL clock source */
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) ;
break;
}
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U);
sysclockfreq = pllvco / pllr;
}
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSE)
{
/* LSE used as system clock source */
sysclockfreq = LSE_VALUE;
}
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSI)
{
/* LSI used as system clock source */
sysclockfreq = LSI_VALUE;
}
else
{
sysclockfreq = 0U;
}
return sysclockfreq;
}
/**
* @brief Return the HCLK frequency.
* @note Each time HCLK changes, this function must be called to update the
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.
*
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency.
* @retval HCLK frequency in Hz
*/
uint32_t HAL_RCC_GetHCLKFreq(void)
{
return SystemCoreClock;
}
/**
* @brief Return the PCLK1 frequency.
* @note Each time PCLK1 changes, this function must be called to update the
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
* @retval PCLK1 frequency in Hz
*/
uint32_t HAL_RCC_GetPCLK1Freq(void)
{
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
return ((uint32_t)(__LL_RCC_CALC_PCLK1_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB1Prescaler())));
}
/**
* @brief Configure the RCC_OscInitStruct according to the internal
* RCC configuration registers.
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
* will be configured.
* @retval None
*/
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
/* Check the parameters */
assert_param(RCC_OscInitStruct != (void *)NULL);
/* Set all possible values for the Oscillator type parameter ---------------*/
#if defined(RCC_HSI48_SUPPORT)
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | \
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48;
#else
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | \
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
#endif /* RCC_HSI48_SUPPORT */
/* Get the HSE configuration -----------------------------------------------*/
if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
{
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
}
else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
{
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
}
else
{
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
}
/* Get the HSI configuration -----------------------------------------------*/
if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
{
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
}
else
{
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
}
RCC_OscInitStruct->HSICalibrationValue = ((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos);
RCC_OscInitStruct->HSIDiv = ((RCC->CR & RCC_CR_HSIDIV) >> RCC_CR_HSIDIV_Pos);
/* Get the LSE configuration -----------------------------------------------*/
if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
{
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
}
else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
{
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
}
else
{
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
}
/* Get the LSI configuration -----------------------------------------------*/
if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
{
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
}
else
{
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
}
#if defined(RCC_HSI48_SUPPORT)
/* Get the HSI48 configuration ---------------------------------------------*/
if (READ_BIT(RCC->CR, RCC_CR_HSI48ON) == RCC_CR_HSI48ON)
{
RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
}
else
{
RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
}
#endif /* RCC_HSI48_SUPPORT */
/* Get the PLL configuration -----------------------------------------------*/
if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
}
else
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
}
RCC_OscInitStruct->PLL.PLLSource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
RCC_OscInitStruct->PLL.PLLM = (RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
RCC_OscInitStruct->PLL.PLLN = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);
RCC_OscInitStruct->PLL.PLLP = (RCC->PLLCFGR & RCC_PLLCFGR_PLLP);
#if defined(RCC_PLLQ_SUPPORT)
RCC_OscInitStruct->PLL.PLLQ = (RCC->PLLCFGR & RCC_PLLCFGR_PLLQ);
#endif /* RCC_PLLQ_SUPPORT */
RCC_OscInitStruct->PLL.PLLR = (RCC->PLLCFGR & RCC_PLLCFGR_PLLR);
}
/**
* @brief Configure the RCC_ClkInitStruct according to the internal
* RCC configuration registers.
* @param RCC_ClkInitStruct Pointer to a @ref RCC_ClkInitTypeDef structure that
* will be configured.
* @param pFLatency Pointer on the Flash Latency.
* @retval None
*/
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
{
/* Check the parameters */
assert_param(RCC_ClkInitStruct != (void *)NULL);
assert_param(pFLatency != (void *)NULL);
/* Set all possible values for the Clock type parameter --------------------*/
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1;
/* Get the SYSCLK configuration --------------------------------------------*/
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
/* Get the HCLK configuration ----------------------------------------------*/
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
/* Get the APB1 configuration ----------------------------------------------*/
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE);
/* Get the Flash Wait State (Latency) configuration ------------------------*/
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
}
/**
* @brief Enable the Clock Security System.
* @note If a failure is detected on the HSE oscillator clock, this oscillator
* is automatically disabled and an interrupt is generated to inform the
* software about the failure (Clock Security System Interrupt, CSSI),
* allowing the MCU to perform rescue operations. The CSSI is linked to
* the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector.
* @note The Clock Security System can only be cleared by reset.
* @retval None
*/
void HAL_RCC_EnableCSS(void)
{
SET_BIT(RCC->CR, RCC_CR_CSSON) ;
}
/**
* @brief Enable the LSE Clock Security System.
* @note If a failure is detected on the LSE oscillator clock, this oscillator
* is automatically disabled and an interrupt is generated to inform the
* software about the failure (Clock Security System Interrupt, CSSI),
* allowing the MCU to perform rescue operations. The CSSI is linked to
* the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector.
* @note The LSE Clock Security System Detection bit (LSECSSD in BDCR) can only be
* cleared by a backup domain reset.
* @retval None
*/
void HAL_RCC_EnableLSECSS(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
}
/**
* @brief Disable the LSE Clock Security System.
* @note After LSE failure detection, the software must disable LSECSSON
* @note The Clock Security System can only be cleared by reset otherwise.
* @retval None
*/
void HAL_RCC_DisableLSECSS(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
}
/**
* @brief Handle the RCC Clock Security System interrupt request.
* @note This API should be called under the NMI_Handler().
* @retval None
*/
void HAL_RCC_NMI_IRQHandler(void)
{
uint32_t itflag = RCC->CIFR;
/* Clear interrupt flags related to CSS */
RCC->CICR = (itflag & (RCC_CIFR_CSSF | RCC_CIFR_LSECSSF));
/* Check RCC CSSF interrupt flag */
if ((itflag & RCC_CIFR_CSSF) != 0x00u)
{
/* RCC Clock Security System interrupt user callback */
HAL_RCC_CSSCallback();
}
/* Check RCC LSECSSF interrupt flag */
if ((itflag & RCC_CIFR_LSECSSF) != 0x00u)
{
/* RCC Clock Security System interrupt user callback */
HAL_RCC_LSECSSCallback();
}
}
/**
* @brief Handle the RCC HSE Clock Security System interrupt callback.
* @retval none
*/
__weak void HAL_RCC_CSSCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCC_CSSCallback should be implemented in the user file
*/
}
/**
* @brief RCC LSE Clock Security System interrupt callback.
* @retval none
*/
__weak void HAL_RCC_LSECSSCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_RCC_LSECSSCallback should be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/