Sync work

This commit is contained in:
Jochen Friedrich 2021-03-27 18:23:58 +01:00
parent 945d2870aa
commit efa5673e71
15 changed files with 1369 additions and 419 deletions

487
boards/MySensors.c Normal file
View file

@ -0,0 +1,487 @@
#include <string.h>
#include <stdlib.h>
#include "MySensors.h"
#include "nuvoton/Common.h"
#include "nuvoton/N76E003.h"
#include "nuvoton/functions.h"
#include "nuvoton/SFR_Macro.h"
#define ICSC_SYS_PACK 0x58
#define SOH 1
#define STX 2
#define ETX 3
#define EOT 4
// message buffers
MyMessage _msg; // Buffer for incoming messages
MyMessage _msgTmp; // Buffer for temporary messages (acks and nonces among others)
// Receiving header information
char _header[6];
// Reception state machine control and storage variables
unsigned char _recPhase;
unsigned char _recPos;
unsigned char _recCommand;
unsigned char _recLen;
unsigned char _recStation;
unsigned char _recSender;
unsigned char _recCS;
unsigned char _recCalcCS;
unsigned char _packet_received;
unsigned char _byte;
char _data[MY_RS485_MAX_MESSAGE_LENGTH];
uint8_t _packet_len;
unsigned char _packet_from;
void delay(uint32_t u32CNT)
{
clr_T0M; //T0M=0, Timer0 Clock = Fsys/12
TMOD |= 0x01; //Timer0 is 16-bit mode
set_TR0; //Start Timer0
while (u32CNT != 0)
{
TL0 = LOBYTE(TIMER_DIV12_VALUE_1ms); //Find define in "Function_define.h" "TIMER VALUE"
TH0 = HIBYTE(TIMER_DIV12_VALUE_1ms);
while (TF0 != 1); //Check Timer0 Time-Out Flag
clr_TF0;
u32CNT --;
}
clr_TR0; //Stop Timer0
}
_Bool send(MyMessage *message, uint8_t data_type)
{
message->last = MY_NODE_ID;
message->sender = MY_NODE_ID;
message->destination = GATEWAY_ADDRESS;
message->command_echo_payload = (data_type << 5) + C_SET;
return transportSend(message);
}
_Bool sendHeartbeat(void)
{
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = GATEWAY_ADDRESS;
_msgTmp.command_echo_payload = ((uint8_t) P_ULONG32 << 5) + (uint8_t) C_INTERNAL;
_msgTmp.type = I_HEARTBEAT_RESPONSE;
_msgTmp.version_length = (4 << 3) + V2_MYS_HEADER_PROTOCOL_VERSION;
_msgTmp.ulValue = 0;
return transportSend(&_msgTmp);
}
_Bool present(const uint8_t childSensorId, const mysensors_sensor_t sensorType, char *desc)
{
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = GATEWAY_ADDRESS;
_msgTmp.command_echo_payload = (P_STRING << 5) + C_PRESENTATION;
_msgTmp.type = sensorType;
_msgTmp.sensor = childSensorId;
_msgTmp.version_length = (strlen(desc) << 3) + V2_MYS_HEADER_PROTOCOL_VERSION;
strcpy((char *)_msgTmp.data, desc);
return transportSend(&_msgTmp);
}
void registerNode(void)
{
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = GATEWAY_ADDRESS;
_msgTmp.command_echo_payload = (P_BYTE << 5) + C_INTERNAL;
_msgTmp.type = I_REGISTRATION_REQUEST;
_msgTmp.sensor = 0;
_msgTmp.version_length = (1 << 3) + V2_MYS_HEADER_PROTOCOL_VERSION;
_msgTmp.bValue = MY_CORE_VERSION;
transportSend(&_msgTmp);
}
void sendLibraryInfo(void)
{
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = GATEWAY_ADDRESS;
_msgTmp.command_echo_payload = (P_STRING << 5) + C_INTERNAL;
_msgTmp.type = I_VERSION;
_msgTmp.version_length = (strlen(MY_LIBRARY_VERSION) << 3) + V2_MYS_HEADER_PROTOCOL_VERSION;
strcpy((char *)_msgTmp.data, MY_LIBRARY_VERSION);
transportSend(&_msgTmp);
}
_Bool sendSketchInfo(const char *name, const char *version)
{
_Bool result = 1;
if (name) {
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = GATEWAY_ADDRESS;
_msgTmp.command_echo_payload = (P_STRING << 5) + C_INTERNAL;
_msgTmp.type = I_SKETCH_NAME;
_msgTmp.version_length = (strlen(name) << 3) + V2_MYS_HEADER_PROTOCOL_VERSION;
strcpy((char *)_msgTmp.data, name);
result &= transportSend(&_msgTmp);
}
if (version) {
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = GATEWAY_ADDRESS;
_msgTmp.command_echo_payload = (P_STRING << 5) + C_INTERNAL;
_msgTmp.type = I_SKETCH_VERSION;
_msgTmp.version_length = (strlen(name) << 3) + V2_MYS_HEADER_PROTOCOL_VERSION;
strcpy((char *)_msgTmp.data, version);
result &= transportSend(&_msgTmp);
}
sendLibraryInfo();
return result;
}
// Message delivered through _msg
_Bool _processInternalCoreMessage(void)
{
const uint8_t type = _msg.type;
if (_msg.sender == GATEWAY_ADDRESS) {
if (type == I_PRESENTATION) {
// Re-send node presentation to controller
present_node();
} else if (type == I_HEARTBEAT_REQUEST) {
(void)sendHeartbeat();
} else if (type == I_REBOOT) {
;
} else if (type == I_VERSION) {
sendLibraryInfo();
} else {
return 0; // further processing required
}
} else {
return 0; // further processing required
}
return 1; // if not GW or no further processing required
}
void transportProcessMessage(void)
{
// get message length and limit size
const uint8_t msgLength = (_msg.version_length & 0xF8) >> 3;
// calculate expected length
const uint8_t command = _msg.command_echo_payload & 0x07;
const uint8_t type = _msg.type;
const uint8_t sender = _msg.sender;
const uint8_t destination = _msg.destination;
// Is message addressed to this node?
if (destination == MY_NODE_ID) {
// null terminate data
_msg.data[msgLength] = 0u;
// Check if sender requests an echo.
if (_msg.command_echo_payload & 0x08) {
memcpy(&_msgTmp, &_msg, sizeof(_msg)); // Copy message
// Reply without echo flag (otherwise we would end up in an eternal loop)
_msgTmp.command_echo_payload = _msgTmp.command_echo_payload & 0xE7;
_msgTmp.command_echo_payload = _msgTmp.command_echo_payload | 0x10;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = sender;
transportSend(&_msgTmp);
}
if(!(_msg.command_echo_payload & 0x10)) {
// only process if not ECHO
if (command == C_INTERNAL) {
if (type == I_ID_RESPONSE) {
return; // no further processing required
}
// general
if (type == I_PING) {
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = sender;
_msgTmp.command_echo_payload = (P_BYTE << 5) + C_INTERNAL;
_msgTmp.type = I_PONG;
_msgTmp.bValue = 1;
transportSend(&_msgTmp);
return; // no further processing required
}
if (type == I_PONG) {
return; // no further processing required
}
if (_processInternalCoreMessage()) {
return; // no further processing required
}
}
}
// Call incoming message callback if available
receive(&_msg);
} else if (destination == BROADCAST_ADDRESS) {
if (command == C_INTERNAL) {
if (type == I_DISCOVER_REQUEST) {
delay(MY_NODE_ID * 50);
_msgTmp.last = MY_NODE_ID;
_msgTmp.sender = MY_NODE_ID;
_msgTmp.destination = sender;
_msgTmp.command_echo_payload = (P_BYTE << 5) + C_INTERNAL;
_msgTmp.type = I_DISCOVER_RESPONSE;
_msgTmp.bValue = GATEWAY_ADDRESS;
transportSend(&_msgTmp);
return; // no further processing required
}
}
if (command != C_INTERNAL) {
receive(&_msg);
}
}
}
//Reset the state machine and release the data pointer
void _serialReset()
{
_recPhase = 0;
_recPos = 0;
_recLen = 0;
_recCommand = 0;
_recCS = 0;
_recCalcCS = 0;
}
// This is the main reception state machine. Progress through the states
// is keyed on either special control characters, or counted number of bytes
// received. If all the data is in the right format, and the calculated
// checksum matches the received checksum, AND the destination station is
// our station ID, then look for a registered command that matches the
// command code. If all the above is true, execute the command's
// function.
_Bool _serialProcess()
{
unsigned char i;
if (!RI) {
return 0;
}
_byte = SBUF;
RI = 0;
switch(_recPhase) {
// Case 0 looks for the header. Bytes arrive in the serial interface and get
// shifted through a header buffer. When the start and end characters in
// the buffer match the SOH/STX pair, and the destination station ID matches
// our ID, save the header information and progress to the next state.
case 0:
memcpy(&_header[0],&_header[1],5);
_header[5] = _byte;
if ((_header[0] == SOH) && (_header[5] == STX) && (_header[1] != _header[2])) {
_recCalcCS = 0;
_recStation = _header[1];
_recSender = _header[2];
_recCommand = _header[3];
_recLen = _header[4];
for (i=1; i<=4; i++) {
_recCalcCS += _header[i];
}
_recPhase = 1;
_recPos = 0;
//Avoid _data[] overflow
if (_recLen >= MY_RS485_MAX_MESSAGE_LENGTH) {
_serialReset();
break;
}
//Check if we should process this message
//We reject the message if we are the sender
//We reject if we are not the receiver and message is not a broadcast
if ((_recSender == MY_NODE_ID) ||
(_recStation != MY_NODE_ID &&
_recStation != BROADCAST_ADDRESS)) {
_serialReset();
break;
}
if (_recLen == 0) {
_recPhase = 2;
}
}
break;
// Case 1 receives the data portion of the packet. Read in "_recLen" number
// of bytes and store them in the _data array.
case 1:
_data[_recPos++] = _byte;
_recCalcCS += _byte;
if (_recPos == _recLen) {
_recPhase = 2;
}
break;
// After the data comes a single ETX character. Do we have it? If not,
// reset the state machine to default and start looking for a new header.
case 2:
// Packet properly terminated?
if (_byte == ETX) {
_recPhase = 3;
} else {
_serialReset();
}
break;
// Next comes the checksum. We have already calculated it from the incoming
// data, so just store the incoming checksum byte for later.
case 3:
_recCS = _byte;
_recPhase = 4;
break;
// The final state - check the last character is EOT and that the checksum matches.
// If that test passes, then look for a valid command callback to execute.
// Execute it if found.
case 4:
if (_byte == EOT) {
if (_recCS == _recCalcCS) {
// First, check for system level commands. It is possible
// to register your own callback as well for system level
// commands which will be called after the system default
// hook.
switch (_recCommand) {
case ICSC_SYS_PACK:
_packet_from = _recSender;
_packet_len = _recLen;
_packet_received = 1;
break;
}
}
}
//Clear the data
_serialReset();
//Return true, we have processed one command
return 1;
break;
}
return 1;
}
_Bool transportSend(MyMessage* data)
{
const char *datap = (const char *)data;
unsigned char i;
unsigned char len;
unsigned char cs = 0;
// This is how many times to try and transmit before failing.
unsigned char timeout = 10;
// Let's start out by looking for a collision. If there has been anything seen in
// the last millisecond, then wait for a random time and check again.
while (_serialProcess()) {
unsigned char del;
del = rand() % 20;
for (i = 0; i < del; i++) {
delay(1);
_serialProcess();
}
timeout--;
if (timeout == 0) {
// Failed to transmit!!!
return 0;
}
}
rs485_out();
// Start of header by writing multiple SOH
for(uint8_t w=0; w<MY_RS485_SOH_COUNT; w++) {
TI = 0;
SBUF = SOH;
while (TI == 0);
}
TI = 0;
SBUF = data->destination;
while (TI == 0);
cs += data->destination;
TI = 0;
SBUF = MY_NODE_ID;
while (TI == 0);
cs += MY_NODE_ID;
TI = 0;
SBUF = ICSC_SYS_PACK;
while (TI == 0);
cs += ICSC_SYS_PACK;
len = (data->version_length >> 3) + V2_MYS_HEADER_SIZE;
TI = 0;
SBUF = len;
while (TI == 0);
cs += len;
TI = 0;
SBUF = STX;
while (TI == 0);
for(i=0; i<len; i++) {
TI = 0;
SBUF = datap[i];
while(TI == 0);
cs += datap[i];
}
TI = 0;
SBUF = ETX;
while (TI == 0);
TI = 0;
SBUF = cs;
while (TI == 0);
TI = 0;
SBUF = EOT;
while (TI == 0);
rs485_in();
return 1;
}
void transportInitialise(void)
{
rs485_in();
_serialReset();
RI = 0;
srand(MY_NODE_ID);
delay(MY_NODE_ID * 50);
present_node();
}
void transportProcess(void)
{
_serialProcess();
if (transportReceive(&_msg))
transportProcessMessage();
}
uint8_t transportReceive(void* data)
{
if (_packet_received) {
memcpy(data,_data,_packet_len);
_packet_received = 0;
return _packet_len;
} else {
return (0);
}
}

320
boards/MySensors.h Normal file
View file

@ -0,0 +1,320 @@
#ifndef MySensors_h
#define MySensors_h
#include <stddef.h>
#include <stdarg.h>
void rs485_in(void);
void rs485_out(void);
typedef unsigned char uint8_t;
typedef unsigned int uint16_t;
typedef unsigned long uint32_t;
typedef signed int int16_t;
typedef signed long int32_t;
#define MY_LIBRARY_VERSION "NUVO 1.0"
#define GATEWAY_ADDRESS ((uint8_t)0) //!< Node ID for GW sketch
//#define MY_NODE_ID ((uint8_t)201)
#define NODE_SENSOR_ID ((uint8_t)255) //!< Node child is always created/presented when a node is started
#define MY_CORE_VERSION ((uint8_t)2) //!< core version
#define MY_CORE_MIN_VERSION ((uint8_t)2) //!< min core version required for compatibility
#define V2_MYS_HEADER_PROTOCOL_VERSION (2u) //!< Protocol version
#define V2_MYS_HEADER_SIZE (7u) //!< Header size
#define V2_MYS_HEADER_MAX_MESSAGE_SIZE (32u) //!< Max payload size
#define V2_MYS_HEADER_VSL_VERSION_POS (0) //!< bitfield position version
#define V2_MYS_HEADER_VSL_VERSION_SIZE (2u) //!< size version field
#define V2_MYS_HEADER_VSL_SIGNED_POS (2u) //!< bitfield position signed field
#define V2_MYS_HEADER_VSL_SIGNED_SIZE (1u) //!< size signed field
#define V2_MYS_HEADER_VSL_LENGTH_POS (3u) //!< bitfield position length field
#define V2_MYS_HEADER_VSL_LENGTH_SIZE (5u) //!< size length field
#define V2_MYS_HEADER_CEP_COMMAND_POS (0) //!< bitfield position command field
#define V2_MYS_HEADER_CEP_COMMAND_SIZE (3u) //!< size command field
#define V2_MYS_HEADER_CEP_ECHOREQUEST_POS (3u) //!< bitfield position echo request field
#define V2_MYS_HEADER_CEP_ECHOREQUEST_SIZE (1u) //!< size echo request field
#define V2_MYS_HEADER_CEP_ECHO_POS (4u) //!< bitfield position echo field
#define V2_MYS_HEADER_CEP_ECHO_SIZE (1u) //!< size echo field
#define V2_MYS_HEADER_CEP_PAYLOADTYPE_POS (5u) //!< bitfield position payload type field
#define V2_MYS_HEADER_CEP_PAYLOADTYPE_SIZE (3u) //!< size payload type field
#define MAX_MESSAGE_SIZE V2_MYS_HEADER_MAX_MESSAGE_SIZE //!< The maximum size of a message (including header)
#define HEADER_SIZE V2_MYS_HEADER_SIZE //!< The size of the header
#define MAX_PAYLOAD_SIZE (MAX_MESSAGE_SIZE - HEADER_SIZE) //!< The maximum size of a payload depends on #MAX_MESSAGE_SIZE and #HEADER_SIZE
#define MY_RS485_MAX_MESSAGE_LENGTH MAX_MESSAGE_SIZE
#define MY_RS485_SOH_COUNT 1
#define MY_CAP_RESET "N"
#define MY_CAP_OTA_FW "N"
#define MY_CAP_RADIO "S"
#define MY_CAP_TYPE "N"
#define MY_CAP_ARCH "F"
#define MY_CAP_SIGN "-"
#define MY_CAP_RXBUF "-"
#define MY_CAP_ENCR "-"
#define MY_CAPABILITIES MY_CAP_RESET MY_CAP_RADIO MY_CAP_OTA_FW MY_CAP_TYPE MY_CAP_ARCH MY_CAP_SIGN MY_CAP_RXBUF MY_CAP_ENCR
#define MY_TRANSPORT_MAX_TX_FAILURES (10u) //!< search for a new parent node after this many transmission failures, higher threshold for repeating nodes
#define MY_TRANSPORT_MAX_TSM_FAILURES (7u) //!< Max. number of consecutive TSM failure state entries (3bits)
#define MY_TRANSPORT_TIMEOUT_EXT_FAILURE_STATE_MS (60*1000ul) //!< Duration extended failure state (in ms)
#define MY_TRANSPORT_STATE_TIMEOUT_MS (2*1000ul) //!< general state timeout (in ms)
#define MY_TRANSPORT_CHKUPL_INTERVAL_MS (10*1000ul) //!< Interval to re-check uplink (in ms)
#define MY_TRANSPORT_STATE_RETRIES (3u) //!< retries before switching to FAILURE
#define BROADCAST_ADDRESS (255u) //!< broadcasts are addressed to ID 255
#define MAX_SUBSEQ_MSGS (5u) //!< Maximum number of subsequently processed messages in FIFO (to prevent transport deadlock if HW issue)
/**
* @brief Node core configuration
*/
/// @brief The command field (message-type) defines the overall properties of a message
typedef enum {
C_PRESENTATION = 0, //!< Sent by a node when they present attached sensors. This is usually done in presentation() at startup.
C_SET = 1, //!< This message is sent from or to a sensor when a sensor value should be updated.
C_REQ = 2, //!< Requests a variable value (usually from an actuator destined for controller).
C_INTERNAL = 3, //!< Internal MySensors messages (also include common messages provided/generated by the library).
C_STREAM = 4, //!< For firmware and other larger chunks of data that need to be divided into pieces.
C_RESERVED_5 = 5, //!< C_RESERVED_5
C_RESERVED_6 = 6, //!< C_RESERVED_6
C_INVALID_7 = 7 //!< C_INVALID_7
} mysensors_command_t;
/// @brief Type of sensor (used when presenting sensors)
typedef enum {
S_DOOR = 0, //!< Door sensor, V_TRIPPED, V_ARMED
S_MOTION = 1, //!< Motion sensor, V_TRIPPED, V_ARMED
S_SMOKE = 2, //!< Smoke sensor, V_TRIPPED, V_ARMED
S_BINARY = 3, //!< Binary light or relay, V_STATUS, V_WATT
S_LIGHT = 3, //!< \deprecated Same as S_BINARY
S_DIMMER = 4, //!< Dimmable light or fan device, V_STATUS (on/off), V_PERCENTAGE (dimmer level 0-100), V_WATT
S_COVER = 5, //!< Blinds or window cover, V_UP, V_DOWN, V_STOP, V_PERCENTAGE (open/close to a percentage)
S_TEMP = 6, //!< Temperature sensor, V_TEMP
S_HUM = 7, //!< Humidity sensor, V_HUM
S_BARO = 8, //!< Barometer sensor, V_PRESSURE, V_FORECAST
S_WIND = 9, //!< Wind sensor, V_WIND, V_GUST
S_RAIN = 10, //!< Rain sensor, V_RAIN, V_RAINRATE
S_UV = 11, //!< Uv sensor, V_UV
S_WEIGHT = 12, //!< Personal scale sensor, V_WEIGHT, V_IMPEDANCE
S_POWER = 13, //!< Power meter, V_WATT, V_KWH, V_VAR, V_VA, V_POWER_FACTOR
S_HEATER = 14, //!< Header device, V_HVAC_SETPOINT_HEAT, V_HVAC_FLOW_STATE, V_TEMP
S_DISTANCE = 15, //!< Distance sensor, V_DISTANCE
S_LIGHT_LEVEL = 16, //!< Light level sensor, V_LIGHT_LEVEL (uncalibrated in percentage), V_LEVEL (light level in lux)
S_ARDUINO_NODE = 17, //!< Used (internally) for presenting a non-repeating Arduino node
S_ARDUINO_REPEATER_NODE = 18, //!< Used (internally) for presenting a repeating Arduino node
S_LOCK = 19, //!< Lock device, V_LOCK_STATUS
S_IR = 20, //!< IR device, V_IR_SEND, V_IR_RECEIVE
S_WATER = 21, //!< Water meter, V_FLOW, V_VOLUME
S_AIR_QUALITY = 22, //!< Air quality sensor, V_LEVEL
S_CUSTOM = 23, //!< Custom sensor
S_DUST = 24, //!< Dust sensor, V_LEVEL
S_SCENE_CONTROLLER = 25, //!< Scene controller device, V_SCENE_ON, V_SCENE_OFF.
S_RGB_LIGHT = 26, //!< RGB light. Send color component data using V_RGB. Also supports V_WATT
S_RGBW_LIGHT = 27, //!< RGB light with an additional White component. Send data using V_RGBW. Also supports V_WATT
S_COLOR_SENSOR = 28, //!< Color sensor, send color information using V_RGB
S_HVAC = 29, //!< Thermostat/HVAC device. V_HVAC_SETPOINT_HEAT, V_HVAC_SETPOINT_COLD, V_HVAC_FLOW_STATE, V_HVAC_FLOW_MODE, V_TEMP
S_MULTIMETER = 30, //!< Multimeter device, V_VOLTAGE, V_CURRENT, V_IMPEDANCE
S_SPRINKLER = 31, //!< Sprinkler, V_STATUS (turn on/off), V_TRIPPED (if fire detecting device)
S_WATER_LEAK = 32, //!< Water leak sensor, V_TRIPPED, V_ARMED
S_SOUND = 33, //!< Sound sensor, V_TRIPPED, V_ARMED, V_LEVEL (sound level in dB)
S_VIBRATION = 34, //!< Vibration sensor, V_TRIPPED, V_ARMED, V_LEVEL (vibration in Hz)
S_MOISTURE = 35, //!< Moisture sensor, V_TRIPPED, V_ARMED, V_LEVEL (water content or moisture in percentage?)
S_INFO = 36, //!< LCD text device / Simple information device on controller, V_TEXT
S_GAS = 37, //!< Gas meter, V_FLOW, V_VOLUME
S_GPS = 38, //!< GPS Sensor, V_POSITION
S_WATER_QUALITY = 39 //!< V_TEMP, V_PH, V_ORP, V_EC, V_STATUS
} mysensors_sensor_t;
/// @brief Type of sensor data (for set/req/echo messages)
typedef enum {
V_TEMP = 0, //!< S_TEMP. Temperature S_TEMP, S_HEATER, S_HVAC
V_HUM = 1, //!< S_HUM. Humidity
V_STATUS = 2, //!< S_BINARY, S_DIMMER, S_SPRINKLER, S_HVAC, S_HEATER. Used for setting/reporting binary (on/off) status. 1=on, 0=off
V_LIGHT = 2, //!< \deprecated Same as V_STATUS
V_PERCENTAGE = 3, //!< S_DIMMER. Used for sending a percentage value 0-100 (%).
V_DIMMER = 3, //!< \deprecated Same as V_PERCENTAGE
V_PRESSURE = 4, //!< S_BARO. Atmospheric Pressure
V_FORECAST = 5, //!< S_BARO. Whether forecast. string of "stable", "sunny", "cloudy", "unstable", "thunderstorm" or "unknown"
V_RAIN = 6, //!< S_RAIN. Amount of rain
V_RAINRATE = 7, //!< S_RAIN. Rate of rain
V_WIND = 8, //!< S_WIND. Wind speed
V_GUST = 9, //!< S_WIND. Gust
V_DIRECTION = 10, //!< S_WIND. Wind direction 0-360 (degrees)
V_UV = 11, //!< S_UV. UV light level
V_WEIGHT = 12, //!< S_WEIGHT. Weight(for scales etc)
V_DISTANCE = 13, //!< S_DISTANCE. Distance
V_IMPEDANCE = 14, //!< S_MULTIMETER, S_WEIGHT. Impedance value
V_ARMED = 15, //!< S_DOOR, S_MOTION, S_SMOKE, S_SPRINKLER. Armed status of a security sensor. 1 = Armed, 0 = Bypassed
V_TRIPPED = 16, //!< S_DOOR, S_MOTION, S_SMOKE, S_SPRINKLER, S_WATER_LEAK, S_SOUND, S_VIBRATION, S_MOISTURE. Tripped status of a security sensor. 1 = Tripped, 0
V_WATT = 17, //!< S_POWER, S_BINARY, S_DIMMER, S_RGB_LIGHT, S_RGBW_LIGHT. Watt value for power meters
V_KWH = 18, //!< S_POWER. Accumulated number of KWH for a power meter
V_SCENE_ON = 19, //!< S_SCENE_CONTROLLER. Turn on a scene
V_SCENE_OFF = 20, //!< S_SCENE_CONTROLLER. Turn of a scene
V_HVAC_FLOW_STATE = 21, //!< S_HEATER, S_HVAC. HVAC flow state ("Off", "HeatOn", "CoolOn", or "AutoChangeOver")
V_HEATER = 21, //!< \deprecated Same as V_HVAC_FLOW_STATE
V_HVAC_SPEED = 22, //!< S_HVAC, S_HEATER. HVAC/Heater fan speed ("Min", "Normal", "Max", "Auto")
V_LIGHT_LEVEL = 23, //!< S_LIGHT_LEVEL. Uncalibrated light level. 0-100%. Use V_LEVEL for light level in lux
V_VAR1 = 24, //!< VAR1
V_VAR2 = 25, //!< VAR2
V_VAR3 = 26, //!< VAR3
V_VAR4 = 27, //!< VAR4
V_VAR5 = 28, //!< VAR5
V_UP = 29, //!< S_COVER. Window covering. Up
V_DOWN = 30, //!< S_COVER. Window covering. Down
V_STOP = 31, //!< S_COVER. Window covering. Stop
V_IR_SEND = 32, //!< S_IR. Send out an IR-command
V_IR_RECEIVE = 33, //!< S_IR. This message contains a received IR-command
V_FLOW = 34, //!< S_WATER. Flow of water (in meter)
V_VOLUME = 35, //!< S_WATER. Water volume
V_LOCK_STATUS = 36, //!< S_LOCK. Set or get lock status. 1=Locked, 0=Unlocked
V_LEVEL = 37, //!< S_DUST, S_AIR_QUALITY, S_SOUND (dB), S_VIBRATION (hz), S_LIGHT_LEVEL (lux)
V_VOLTAGE = 38, //!< S_MULTIMETER
V_CURRENT = 39, //!< S_MULTIMETER
V_RGB = 40, //!< S_RGB_LIGHT, S_COLOR_SENSOR. Sent as ASCII hex: RRGGBB (RR=red, GG=green, BB=blue component)
V_RGBW = 41, //!< S_RGBW_LIGHT. Sent as ASCII hex: RRGGBBWW (WW=white component)
V_ID = 42, //!< Used for sending in sensors hardware ids (i.e. OneWire DS1820b).
V_UNIT_PREFIX = 43, //!< Allows sensors to send in a string representing the unit prefix to be displayed in GUI, not parsed by controller! E.g. cm, m, km, inch.
V_HVAC_SETPOINT_COOL = 44, //!< S_HVAC. HVAC cool setpoint (Integer between 0-100)
V_HVAC_SETPOINT_HEAT = 45, //!< S_HEATER, S_HVAC. HVAC/Heater setpoint (Integer between 0-100)
V_HVAC_FLOW_MODE = 46, //!< S_HVAC. Flow mode for HVAC ("Auto", "ContinuousOn", "PeriodicOn")
V_TEXT = 47, //!< S_INFO. Text message to display on LCD or controller device
V_CUSTOM = 48, //!< Custom messages used for controller/inter node specific commands, preferably using S_CUSTOM device type.
V_POSITION = 49, //!< GPS position and altitude. Payload: latitude;longitude;altitude(m). E.g. "55.722526;13.017972;18"
V_IR_RECORD = 50, //!< Record IR codes S_IR for playback
V_PH = 51, //!< S_WATER_QUALITY, water PH
V_ORP = 52, //!< S_WATER_QUALITY, water ORP : redox potential in mV
V_EC = 53, //!< S_WATER_QUALITY, water electric conductivity μS/cm (microSiemens/cm)
V_VAR = 54, //!< S_POWER, Reactive power: volt-ampere reactive (var)
V_VA = 55, //!< S_POWER, Apparent power: volt-ampere (VA)
V_POWER_FACTOR = 56, //!< S_POWER, Ratio of real power to apparent power: floating point value in the range [-1,..,1]
} mysensors_data_t;
/// @brief Type of internal messages (for internal messages)
typedef enum {
I_BATTERY_LEVEL = 0, //!< Battery level
I_TIME = 1, //!< Time (request/response)
I_VERSION = 2, //!< Version
I_ID_REQUEST = 3, //!< ID request
I_ID_RESPONSE = 4, //!< ID response
I_INCLUSION_MODE = 5, //!< Inclusion mode
I_CONFIG = 6, //!< Config (request/response)
I_FIND_PARENT_REQUEST = 7, //!< Find parent
I_FIND_PARENT_RESPONSE = 8, //!< Find parent response
I_LOG_MESSAGE = 9, //!< Log message
I_CHILDREN = 10, //!< Children
I_SKETCH_NAME = 11, //!< Sketch name
I_SKETCH_VERSION = 12, //!< Sketch version
I_REBOOT = 13, //!< Reboot request
I_GATEWAY_READY = 14, //!< Gateway ready
I_SIGNING_PRESENTATION = 15, //!< Provides signing related preferences (first byte is preference version)
I_NONCE_REQUEST = 16, //!< Request for a nonce
I_NONCE_RESPONSE = 17, //!< Payload is nonce data
I_HEARTBEAT_REQUEST = 18, //!< Heartbeat request
I_PRESENTATION = 19, //!< Presentation message
I_DISCOVER_REQUEST = 20, //!< Discover request
I_DISCOVER_RESPONSE = 21, //!< Discover response
I_HEARTBEAT_RESPONSE = 22, //!< Heartbeat response
I_LOCKED = 23, //!< Node is locked (reason in string-payload)
I_PING = 24, //!< Ping sent to node, payload incremental hop counter
I_PONG = 25, //!< In return to ping, sent back to sender, payload incremental hop counter
I_REGISTRATION_REQUEST = 26, //!< Register request to GW
I_REGISTRATION_RESPONSE = 27, //!< Register response from GW
I_DEBUG = 28, //!< Debug message
I_SIGNAL_REPORT_REQUEST = 29, //!< Device signal strength request
I_SIGNAL_REPORT_REVERSE = 30, //!< Internal
I_SIGNAL_REPORT_RESPONSE = 31, //!< Device signal strength response (RSSI)
I_PRE_SLEEP_NOTIFICATION = 32, //!< Message sent before node is going to sleep
I_POST_SLEEP_NOTIFICATION = 33 //!< Message sent after node woke up (if enabled)
} mysensors_internal_t;
/// @brief Type of data stream (for streamed message)
typedef enum {
ST_FIRMWARE_CONFIG_REQUEST = 0, //!< Request new FW, payload contains current FW details
ST_FIRMWARE_CONFIG_RESPONSE = 1, //!< New FW details to initiate OTA FW update
ST_FIRMWARE_REQUEST = 2, //!< Request FW block
ST_FIRMWARE_RESPONSE = 3, //!< Response FW block
ST_SOUND = 4, //!< Sound
ST_IMAGE = 5, //!< Image
ST_FIRMWARE_CONFIRM = 6, //!< Mark running firmware as valid (MyOTAFirmwareUpdateNVM + mcuboot)
ST_FIRMWARE_RESPONSE_RLE = 7, //!< Response FW block with run length encoded data
} mysensors_stream_t;
/// @brief Type of payload
typedef enum {
P_STRING = 0, //!< Payload type is string
P_BYTE = 1, //!< Payload type is byte
P_INT16 = 2, //!< Payload type is INT16
P_UINT16 = 3, //!< Payload type is UINT16
P_LONG32 = 4, //!< Payload type is INT32
P_ULONG32 = 5, //!< Payload type is UINT32
P_CUSTOM = 6, //!< Payload type is binary
P_FLOAT32 = 7 //!< Payload type is float32
} mysensors_payload_t;
typedef union {
struct {
uint8_t last; //!< 8 bit - Id of last node this message passed
uint8_t sender; //!< 8 bit - Id of sender node (origin)
uint8_t destination; //!< 8 bit - Id of destination node
/**
* 2 bit - Protocol version<br>
* 1 bit - Signed flag<br>
* 5 bit - Length of payload
*/
uint8_t version_length;
/**
* 3 bit - Command type<br>
* 1 bit - Request an echo - Indicator that receiver should echo the message back to the sender<br>
* 1 bit - Is echo message - Indicator that this is the echoed message<br>
* 3 bit - Payload data type
*/
uint8_t command_echo_payload;
uint8_t type; //!< 8 bit - Type varies depending on command
uint8_t sensor; //!< 8 bit - Id of sensor that this message concerns.
/*
* Each message can transfer a payload. We add one extra byte for string
* terminator \0 to be "printable" this is not transferred OTA
* This union is used to simplify the construction of the binary data types transferred.
*/
union {
uint8_t bValue; //!< unsigned byte value (8-bit)
uint16_t uiValue; //!< unsigned integer value (16-bit)
int16_t iValue; //!< signed integer value (16-bit)
uint32_t ulValue; //!< unsigned long value (32-bit)
int32_t lValue; //!< signed long value (32-bit)
struct { //!< Float messages
float fValue;
uint8_t fPrecision; //!< Number of decimals when serializing
};
char data[MAX_PAYLOAD_SIZE + 1]; //!< Buffer for raw payload data
};
};
uint8_t array[HEADER_SIZE + MAX_PAYLOAD_SIZE + 1]; //!< buffer for entire message
} MyMessage;
void delay(uint32_t i);
void registerNode(void);
void present_node(void);
_Bool present(const uint8_t sensorId, const mysensors_sensor_t sensorType, char *desc);
_Bool sendSketchInfo(const char *name, const char *version);
_Bool send(MyMessage *msg,uint8_t data_type);
_Bool sendHeartbeat(void);
void receive(const MyMessage*);
void transportProcessMessage(void);
_Bool transportSend(MyMessage *message);
void transportInitialise(void);
void transportProcess(void);
uint8_t transportReceive(void *data);
_Bool isMessageReceived(void);
void resetMessageReceived(void);
uint32_t transportGetHeartbeat(void);
#endif // MySensors_h

5
boards/build.sh Executable file
View file

@ -0,0 +1,5 @@
sdcc -mmcs51 -o lc.ihx lc.c -D FOSC_160000 -I../include
sdcc -mmcs51 --model-large -c MySensors.c -D FOSC_160000 -D MY_NODE_ID=201 -I../include
sdcc -mmcs51 --model-large -o chan8.ihx chan8.c MySensors.rel -D FOSC_160000 -I../include
sdcc -mmcs51 --model-large -c MySensors.c -D FOSC_160000 -D MY_NODE_ID=202 -I../include
sdcc -mmcs51 --model-large -o rs485relay.ihx rs485relay.c MySensors.rel -D FOSC_160000 -I../include

167
boards/chan8.c Normal file
View file

@ -0,0 +1,167 @@
#include <nuvoton/functions.h>
#include <nuvoton/N76E003.h>
#include <nuvoton/Common.h>
#include <nuvoton/SFR_Macro.h>
#include <string.h>
#include "MySensors.h"
#define M0 P03
#define M1 P04
#define M2 P01
#define RS485_DIR P05
#define OE P13
#define DS P14
#define SHCP P11
#define STCP P12
#define MAXCMD 64
unsigned char relay;
unsigned char crc;
void rs485_in(void) {
RS485_DIR = 0;
}
void rs485_out(void) {
RS485_DIR = 1;
}
void load(void) {
OE = 0;
STCP = 0;
SHCP = 0;
DS = (relay & 0x01)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x02)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x04)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x08)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x10)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x20)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x40)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x80)? 1 : 0;
SHCP = 1;
STCP = 1;
}
void receive(const MyMessage* mymsg)
{
uint8_t sensor;
// We only expect one type of message from controller. But we better check anyway.
if (mymsg->type == V_STATUS) {
sensor = mymsg->sensor;
if (sensor == 1)
relay = (relay & 0xFE) + ((mymsg->data[0]=='1')?1:0);
if (sensor == 2)
relay = (relay & 0xFD) + ((mymsg->data[0]=='1')?2:0);
if (sensor == 3)
relay = (relay & 0xFB) + ((mymsg->data[0]=='1')?4:0);
if (sensor == 4)
relay = (relay & 0xF7) + ((mymsg->data[0]=='1')?8:0);
if (sensor == 5)
relay = (relay & 0xEF) + ((mymsg->data[0]=='1')?0x10:0);
if (sensor == 6)
relay = (relay & 0xDF) + ((mymsg->data[0]=='1')?0x20:0);
if (sensor == 7)
relay = (relay & 0xBF) + ((mymsg->data[0]=='1')?0x40:0);
if (sensor == 8)
relay = (relay & 0x7F) + ((mymsg->data[0]=='1')?0x80:0);
load();
}
}
void present_node(void) {
present(NODE_SENSOR_ID, S_ARDUINO_NODE,"Nuvoton Relay Board");
sendSketchInfo("Relay_Nuvoton", "1.1");
present(1, S_BINARY, "Relay 1");
present(2, S_BINARY, "Relay 2");
present(3, S_BINARY, "Relay 3");
present(4, S_BINARY, "Relay 4");
present(5, S_BINARY, "Relay 5");
present(6, S_BINARY, "Relay 6");
present(7, S_BINARY, "Relay 7");
present(8, S_BINARY, "Relay 8");
registerNode();
delay(20);
}
void uart_loop() {
transportProcess();
}
void uart_init(UINT32 u32Baudrate) //T1M = 1, SMOD = 1
{
P06_PushPull_Mode;
P07_Input_Mode;
SCON = 0x50; //UART0 Mode1,REN=1,TI=1
TMOD |= 0x20; //Timer1 Mode1
set_SMOD; //UART0 Double Rate Enable
set_T1M;
clr_BRCK; //Serial port 0 baud rate clock source = Timer1
#ifdef FOSC_160000
TH1 = 256 - (1000000 / u32Baudrate + 1); /*16 MHz */
#endif
#ifdef FOSC_166000
TH1 = 256 - (1037500 / u32Baudrate); /*16.6 MHz */
#endif
set_TR1;
set_TI; //For printf function must setting TI = 1
}
int main()
{
uart_init(9600);
RS485_DIR = 0;
P05_PushPull_Mode;
/* Relays */
relay = 0;
M0 = 1;
M1 = 1;
M2 = 1;
P01_Quasi_Mode;
P03_Quasi_Mode;
P04_Quasi_Mode;
P11_PushPull_Mode;
P12_PushPull_Mode;
P13_PushPull_Mode;
P14_PushPull_Mode;
load();
OE = 0;
transportInitialise();
while (1)
{
uart_loop();
}
}

273
boards/chan8.c.old Normal file
View file

@ -0,0 +1,273 @@
#include <nuvoton/functions.h>
#include <nuvoton/N76E003.h>
#include <nuvoton/Common.h>
#include <nuvoton/SFR_Macro.h>
#include <string.h>
#define M0 P03
#define M1 P04
#define M2 P01
#define RS485_DIR P05
#define OE P13
#define DS P14
#define SHCP P11
#define STCP P12
#define MAXCMD 64
unsigned char relay;
unsigned char crc;
unsigned char getchar1(void)
{
UINT8 c;
while (!RI);
c = SBUF;
RI = 0;
return (c);
}
int putchar1 (unsigned char c)
{
crc += c;
TI = 0;
SBUF = c;
while(TI==0);
return 0;
}
void sendpkt(unsigned char cmd, unsigned int len, unsigned char *buffer) {
unsigned int i;
crc = 0;
putchar1(0x55);
putchar1(0xAA);
putchar1(0x03);
putchar1(cmd);
putchar1(len >> 8);
putchar1(len & 0xFF);
for (i=0; i<len; i++) {
putchar1(buffer[i]);
}
putchar1(crc);
}
void load(void) {
OE = 0;
STCP = 0;
SHCP = 0;
DS = (relay & 0x01)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x02)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x04)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x08)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x10)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x20)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x40)? 1 : 0;
SHCP = 1;
SHCP = 0;
DS = (relay & 0x80)? 1 : 0;
SHCP = 1;
STCP = 1;
}
void tuya_receive (unsigned int len, unsigned char *buffer) {
unsigned char dpid;
unsigned char dtype;
unsigned int dlen;
if (len < 4) return;
dpid = buffer[0];
dtype = buffer[1];
dlen = buffer[2] << 8 + buffer[3];
switch(dpid) {
case 1:
relay = (relay & 0xFE) | (buffer[4] ? 1 : 0);
load();
break;
case 2:
relay = (relay & 0xFD) | (buffer[4] ? 2 : 0);
load();
break;
case 3:
relay = (relay & 0xFB) | (buffer[4] ? 4 : 0);
load();
break;
case 4:
relay = (relay & 0xF7) | (buffer[4] ? 8 : 0);
load();
break;
case 5:
relay = (relay & 0xEF) | (buffer[4] ? 0x10 : 0);
load();
break;
case 6:
relay = (relay & 0xDF) | (buffer[4] ? 0x20 : 0);
load();
break;
case 7:
relay = (relay & 0xBF) | (buffer[4] ? 0x40 : 0);
load();
break;
case 8:
relay = (relay & 0x7F) | (buffer[4] ? 0x80 : 0);
load();
break;
}
sendpkt(7, len, buffer);
}
void process(unsigned char cmd, unsigned int len, unsigned char *buffer) {
static unsigned char restart = 0;
switch (cmd) {
case 0: /* Heartbeat */
buffer[0] = restart;
restart = 1;
sendpkt(0, 1, buffer);
break;
case 1: /* Identify */
strcpy(buffer,"Nuovo");
len = strlen(buffer);
sendpkt(1, len, buffer);
break;
case 3: /* WIFI State */
sendpkt(3, 0, NULL);
break;
case 6: /* Set Command */
tuya_receive(len, buffer);
break;
case 8: /* Query Command */
break;
}
}
void recvpkt(void)
{
static unsigned char state = 0;
static unsigned char cmd;
static unsigned int len;
static unsigned char rcrc;
static unsigned char i;
static unsigned char command[MAXCMD];
if (RI) {
int inByte = getchar1();
switch (state) {
case 0:
if (inByte == 0x55) state++;
rcrc = 0;
break;
case 1:
if (inByte == 0xaa) state++; else state = 0;
break;
case 2:
if (inByte == 0) state++; else state = 0;
break;
case 3:
cmd = inByte;
state++;
break;
case 4:
len = inByte << 8;
state++;
break;
case 5:
len += inByte;
if (len < MAXCMD) state++; else state = 0;
if (len == 0) state++;
i = 0;
break;
case 6:
command[i] = inByte;
i++;
if (len == i) state++;
break;
case 7:
if (inByte == rcrc)
process(cmd, len, command);
state = 0;
break;
}
rcrc = rcrc + inByte;
}
}
void uart_loop() {
recvpkt();
}
void uart_init(UINT32 u32Baudrate) //T1M = 1, SMOD = 1
{
P06_PushPull_Mode;
P07_Input_Mode;
SCON = 0x50; //UART0 Mode1,REN=1,TI=1
TMOD |= 0x20; //Timer1 Mode1
set_SMOD; //UART0 Double Rate Enable
set_T1M;
clr_BRCK; //Serial port 0 baud rate clock source = Timer1
#ifdef FOSC_160000
TH1 = 256 - (1000000 / u32Baudrate + 1); /*16 MHz */
#endif
#ifdef FOSC_166000
TH1 = 256 - (1037500 / u32Baudrate); /*16.6 MHz */
#endif
set_TR1;
set_TI; //For printf function must setting TI = 1
}
int main()
{
uart_init(9600);
RS485_DIR = 0;
P05_PushPull_Mode;
/* Relays */
relay = 16;
M0 = 1;
M1 = 1;
M2 = 1;
P01_Quasi_Mode;
P03_Quasi_Mode;
P04_Quasi_Mode;
P11_PushPull_Mode;
P12_PushPull_Mode;
P13_PushPull_Mode;
P14_PushPull_Mode;
load();
OE = 0;
while (1)
{
uart_loop();
}
}

View file

@ -1,7 +1,6 @@
#include <nuvoton/functions.h>
#include <nuvoton/N76E003.h>
#include <nuvoton/Common.h>
#include <nuvoton/Delay.h>
#include <nuvoton/SFR_Macro.h>
#include <string.h>

106
boards/rs485relay.c Normal file
View file

@ -0,0 +1,106 @@
#include <nuvoton/functions.h>
#include <nuvoton/N76E003.h>
#include <nuvoton/Common.h>
#include <nuvoton/SFR_Macro.h>
#include <string.h>
#include "MySensors.h"
#define RS485_DIR P14
#define IN1 P05
#define IN2 P15
#define RELAY1 P13
#define RELAY2 P01
#define MAXCMD 64
unsigned char relay;
unsigned char crc;
void rs485_in(void) {
RS485_DIR = 0;
}
void rs485_out(void) {
RS485_DIR = 1;
}
void receive(const MyMessage* mymsg)
{
uint8_t sensor;
// We only expect one type of message from controller. But we better check anyway.
if (mymsg->type == V_STATUS) {
sensor = mymsg->sensor;
if (sensor == 3)
RELAY1 = (mymsg->data[0]=='1')?1:0;
if (sensor == 4)
RELAY2 = (mymsg->data[0]=='1')?1:0;
}
}
void present_node(void) {
present(NODE_SENSOR_ID, S_ARDUINO_NODE,"Nuvoton Relay Board");
sendSketchInfo("Relay_Nuvoton", "1.1");
present(1, S_DOOR, "IN1");
present(2, S_DOOR, "IB2");
present(3, S_BINARY, "Relay 1");
present(4, S_BINARY, "Relay 2");
registerNode();
delay(20);
}
void uart_loop() {
transportProcess();
}
void uart_init(UINT32 u32Baudrate) //T1M = 1, SMOD = 1
{
P06_PushPull_Mode;
P07_Input_Mode;
SCON = 0x50; //UART0 Mode1,REN=1,TI=1
TMOD |= 0x20; //Timer1 Mode1
set_SMOD; //UART0 Double Rate Enable
set_T1M;
clr_BRCK; //Serial port 0 baud rate clock source = Timer1
#ifdef FOSC_160000
TH1 = 256 - (1000000 / u32Baudrate + 1); /*16 MHz */
#endif
#ifdef FOSC_166000
TH1 = 256 - (1037500 / u32Baudrate); /*16.6 MHz */
#endif
set_TR1;
set_TI; //For printf function must setting TI = 1
}
int main()
{
uart_init(9600);
RS485_DIR = 0;
P13_PushPull_Mode;
/* Relays */
RELAY1 = 0;
RELAY2 = 0;
P01_PushPull_Mode;
P13_PushPull_Mode;
/* Inputs */
P05_Input_Mode;
P15_Input_Mode;
transportInitialise();
while (1)
{
uart_loop();
}
}

View file

@ -1,8 +0,0 @@
void Timer0_Delay100us(UINT32 u32CNT);
void Timer0_Delay1ms(UINT32 u32CNT);
void Timer1_Delay10ms(UINT32 u32CNT);
void Timer2_Delay500us(UINT32 u32CNT);
void Timer3_Delay100ms(UINT32 u32CNT);
void Timer0_Delay40ms(UINT32 u32CNT);
void Timer3_Delay10us(UINT32 u32CNT);

View file

@ -1 +0,0 @@
sdcc -mmcs51 -o 2relays.ihx main.c -D FOSC_160000 -I../include

View file

@ -9,8 +9,12 @@
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdint.h>
#include "n76e003.h"
#include <nuvoton/functions.h>
#include <nuvoton/N76E003.h>
#include <nuvoton/Common.h>
#include <nuvoton/Delay.h>
#include <nuvoton/SFR_Macro.h>
// 16Mhz clock
#define CLOCK 16000000L
@ -19,14 +23,14 @@
// Per milisecond
#define T0_1MS ((T0CLOCK)/1000L)
static void msdelay(uint32_t count)
static void msdelay(unsigned long int count)
{
int16_t reload = -T0_1MS;
int reload = -T0_1MS;
// Input = Fsys/12
SET_FIELD(CKCON, T0M, 0);
clr_T0M;
// Mode 1
SET_FIELD(TMOD, T0M, 1);
set_GATE_T0;
// Start
TR0 = 1;

1
n76e003_blink/build.sh Executable file
View file

@ -0,0 +1 @@
sdcc -mmcs51 -o blink_raw.ihx blink_raw.c -D FOSC_160000 -I../include

View file

@ -1,403 +0,0 @@
/* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef N76E003_H
#define N76E003_H
#include <compiler.h>
#define DEFINE_FIELD(reg, field, bit, len) \
reg##_##field##_Pos = (bit), \
reg##_##field##_Msk = (((1 << (len)) - 1) << (bit)),
#define GET_FIELD(reg, field) \
(((reg) & reg##_##field##_Msk) >> reg##_##field##_Pos)
#define SET_FIELD(reg, field, val) \
do { \
(reg) = ((reg) & ~(reg##_##field##_Msk)) | \
(((val) << (reg##_##field##_Pos)) & (reg##_##field##_Msk)); \
} while(0)
SFR(P0, 0x80);
SFR(SP, 0x81);
SFR(DPL, 0x82);
SFR(DPH, 0x83);
SFR(RCTRIM0, 0x84);
SFR(RCTRIM1, 0x85);
SFR(RWK, 0x86);
SFR(PCON, 0x87);
enum {
DEFINE_FIELD(PCON, SMOD, 7, 1)
DEFINE_FIELD(PCON, SMOD0, 6, 1)
DEFINE_FIELD(PCON, POF, 4, 1)
DEFINE_FIELD(PCON, GF1, 3, 1)
DEFINE_FIELD(PCON, GF0, 2, 1)
DEFINE_FIELD(PCON, PD, 1, 1)
DEFINE_FIELD(PCON, IDL, 0, 1)
};
SFR(TCON, 0x88);
SFR(TMOD, 0x89);
enum {
DEFINE_FIELD(TMOD, T0M, 0, 2)
DEFINE_FIELD(TMOD, T0CT, 2, 1)
DEFINE_FIELD(TMOD, T0GATE, 3, 1)
DEFINE_FIELD(TMOD, T1M, 4, 2)
DEFINE_FIELD(TMOD, T1CT, 6, 1)
DEFINE_FIELD(TMOD, T1GATE, 7, 1)
};
SFR(TL0, 0x8A);
SFR(TL1, 0x8B);
SFR(TH0, 0x8C);
SFR(TH1, 0x8D);
SFR(CKCON, 0x8E);
enum {
DEFINE_FIELD(CKCON, PWMCKS, 6, 1)
DEFINE_FIELD(CKCON, T1M, 4, 1)
DEFINE_FIELD(CKCON, T0M, 3, 1)
DEFINE_FIELD(CKCON, CLOEN, 1, 1)
};
SFR(WKCON, 0x8F);
SFR(P1, 0x90);
SFR(SFRS, 0x91); //TA Protection
SFR(CAPCON0, 0x92);
SFR(CAPCON1, 0x93);
SFR(CAPCON2, 0x94);
SFR(CKDIV, 0x95);
SFR(CKSWT, 0x96); //TA Protection
SFR(CKEN, 0x97); //TA Protection
SFR(SCON, 0x98);
SFR(SBUF, 0x99);
SFR(SBUF_1, 0x9A);
SFR(EIE, 0x9B);
SFR(EIE1, 0x9C);
SFR(CHPCON, 0x9F); //TA Protection
enum {
EIE_ET2_BIT = (1 << 7),
EIE_ESPI_BIT = (1 << 6),
EIE_EFB_BIT = (1 << 5),
EIE_EWDT_BIT = (1 << 4),
EIE_EPWM_BIT = (1 << 3),
EIE_ECAP_BIT = (1 << 2),
EIE_EPI_BIT = (1 << 1),
EIE_EI2C_BIT = (1 << 1),
};
SFR(P2, 0xA0);
SFR(AUXR1, 0xA2);
SFR(BODCON0, 0xA3); //TA Protection
SFR(IAPTRG, 0xA4); //TA Protection
SFR(IAPUEN, 0xA5); //TA Protection
SFR(IAPAL, 0xA6);
SFR(IAPAH, 0xA7);
SFR(IE, 0xA8);
SFR(SADDR, 0xA9);
SFR(WDCON, 0xAA); //TA Protection
SFR(BODCON1, 0xAB); //TA Protection
SFR(P3M1, 0xAC);
SFR(P3S, 0xAC); //Page1
SFR(P3M2, 0xAD);
SFR(P3SR, 0xAD); //Page1
SFR(IAPFD, 0xAE);
SFR(IAPCN, 0xAF);
SFR(P3, 0xB0);
SFR(P0M1, 0xB1);
SFR(P0S, 0xB1); //Page1
SFR(P0M2, 0xB2);
SFR(P0SR, 0xB2); //Page1
SFR(P1M1, 0xB3);
SFR(P1S, 0xB3); //Page1
SFR(P1M2, 0xB4);
SFR(P1SR, 0xB4); //Page1
SFR(P2S, 0xB5);
SFR(IPH, 0xB7);
SFR(PWMINTC, 0xB7); //Page1
SFR(IP, 0xB8);
SFR(SADEN, 0xB9);
SFR(SADEN_1, 0xBA);
SFR(SADDR_1, 0xBB);
SFR(I2DAT, 0xBC);
SFR(I2STAT, 0xBD);
SFR(I2CLK, 0xBE);
SFR(I2TOC, 0xBF);
SFR(I2CON, 0xC0);
SFR(I2ADDR, 0xC1);
enum {
I2CSTAT_BUS_ERROR = 0x00,
I2CSTAT_BUS_RELEASED = 0xF8,
I2CSTAT_M_START = 0x08,
I2CSTAT_M_REPEAT_START = 0x10,
I2CSTAT_M_TX_ADDR_ACK = 0x18,
I2CSTAT_M_TX_ADDR_NACK = 0x20,
I2CSTAT_M_TX_DATA_ACK = 0x28,
I2CSTAT_M_TX_DATA_NACK = 0x30,
I2CSTAT_M_ARB_LOST = 0x38,
I2CSTAT_M_RX_ADDR_ACK = 0x40,
I2CSTAT_M_RX_ADDR_NACK = 0x48,
I2CSTAT_M_RX_DATA_ACK = 0x50,
I2CSTAT_M_RX_DATA_NACK = 0x58,
I2CSTAT_S_TX_REPEAT_START_OR_STOP = 0xA0,
I2CSTAT_S_TX_ARB_LOST = 0xB0,
I2CSTAT_S_TX_DATA_ACK = 0xB8,
I2CSTAT_S_TX_DATA_NACK = 0xC0,
I2CSTAT_S_TX_LAST_DATA_ACK = 0xC8,
I2CSTAT_S_RX_ACK = 0x60,
I2CSTAT_S_RX_ARB_LOST = 0x68,
I2CSTAT_S_RX_DATA_ACK = 0x80,
I2CSTAT_S_RX_DATA_NACK = 0x88,
I2CSTAT_GC_ADDR_ACK = 0x70,
I2CSTAT_GC_ARB_LOST = 0x78,
I2CSTAT_GC_DATA_ACK = 0x90,
I2CSTAT_GC_DATA_NACK = 0x98,
};
SFR(ADCRL, 0xC2);
SFR(ADCRH, 0xC3);
SFR(T3CON, 0xC4);
enum {
DEFINE_FIELD(T3CON, SMOD_1, 7, 1)
DEFINE_FIELD(T3CON, SMOD0_1, 6, 1)
DEFINE_FIELD(T3CON, BRCK, 5, 1)
DEFINE_FIELD(T3CON, TF3, 4, 1)
DEFINE_FIELD(T3CON, TR3, 3, 1)
DEFINE_FIELD(T3CON, T3PS, 0, 3)
};
SFR(PWM4H, 0xC4); //Page1
SFR(RL3, 0xC5);
SFR(PWM5H, 0xC5); //Page1
SFR(RH3, 0xC6);
SFR(PIOCON1, 0xC6); //Page1
SFR(TA, 0xC7);
SFR(T2CON, 0xC8);
SFR(T2MOD, 0xC9);
SFR(RCMP2L, 0xCA);
SFR(RCMP2H, 0xCB);
SFR(TL2, 0xCC);
SFR(PWM4L, 0xCC); //Page1
SFR(TH2, 0xCD);
SFR(PWM5L, 0xCD); //Page1
SFR(ADCMPL, 0xCE);
SFR(ADCMPH, 0xCF);
SFR(PSW, 0xD0);
SFR(PWMPH, 0xD1);
SFR(PWM0H, 0xD2);
SFR(PWM1H, 0xD3);
SFR(PWM2H, 0xD4);
SFR(PWM3H, 0xD5);
SFR(PNP, 0xD6);
SFR(FBD, 0xD7);
SFR(PWMCON0, 0xD8);
SFR(PWMPL, 0xD9);
SFR(PWM0L, 0xDA);
SFR(PWM1L, 0xDB);
SFR(PWM2L, 0xDC);
SFR(PWM3L, 0xDD);
SFR(PIOCON0, 0xDE);
SFR(PWMCON1, 0xDF);
SFR(ACC, 0xE0);
SFR(ADCCON1, 0xE1);
SFR(ADCCON2, 0xE2);
SFR(ADCDLY, 0xE3);
SFR(C0L, 0xE4);
SFR(C0H, 0xE5);
SFR(C1L, 0xE6);
SFR(C1H, 0xE7);
SFR(ADCCON0, 0xE8);
SFR(PICON, 0xE9);
SFR(PINEN, 0xEA);
SFR(PIPEN, 0xEB);
SFR(PIF, 0xEC);
SFR(C2L, 0xED);
SFR(C2H, 0xEE);
SFR(EIP, 0xEF);
SFR(B, 0xF0);
SFR(CAPCON3, 0xF1);
SFR(CAPCON4, 0xF2);
SFR(SPCR, 0xF3);
SFR(SPCR2, 0xF3); //Page1
SFR(SPSR, 0xF4);
SFR(SPDR, 0xF5);
SFR(AINDIDS, 0xF6);
SFR(EIPH, 0xF7);
SFR(SCON_1, 0xF8);
SFR(PDTEN, 0xF9); //TA Protection
SFR(PDTCNT, 0xFA); //TA Protection
SFR(PMEN, 0xFB);
SFR(PMD, 0xFC);
SFR(EIP1, 0xFE);
SFR(EIPH1, 0xFF);
/* BIT Registers */
/* SCON_1 */
SBIT(SM0_1, 0xF8, 7);
SBIT(FE_1, 0xF8, 7);
SBIT(SM1_1, 0xF8, 6);
SBIT(SM2_1, 0xF8, 5);
SBIT(REN_1, 0xF8, 4);
SBIT(TB8_1, 0xF8, 3);
SBIT(RB8_1, 0xF8, 2);
SBIT(TI_1, 0xF8, 1);
SBIT(RI_1, 0xF8, 0);
/* ADCCON0 */
SBIT(ADCF, 0xE8, 7);
SBIT(ADCS, 0xE8, 6);
SBIT(ETGSEL1,0xE8, 5);
SBIT(ETGSEL0,0xE8, 4);
SBIT(ADCHS3, 0xE8, 3);
SBIT(ADCHS2, 0xE8, 2);
SBIT(ADCHS1, 0xE8, 1);
SBIT(ADCHS0, 0xE8, 0);
/* PWMCON0 */
SBIT(PWMRUN, 0xD8, 7);
SBIT(LOAD, 0xD8, 6);
SBIT(PWMF, 0xD8, 5);
SBIT(CLRPWM, 0xD8, 4);
/* PSW */
SBIT(CY, 0xD0, 7);
SBIT(AC, 0xD0, 6);
SBIT(F0, 0xD0, 5);
SBIT(RS1, 0xD0, 4);
SBIT(RS0, 0xD0, 3);
SBIT(OV, 0xD0, 2);
SBIT(P, 0xD0, 0);
/* T2CON */
SBIT(TF2, 0xC8, 7);
SBIT(TR2, 0xC8, 2);
SBIT(CM_RL2, 0xC8, 0);
/* I2CON
* Naming differs from Nuvoton headers:
* I2C prefixes added to ambiguous bits
*/
SBIT(I2CEN, 0xC0, 6);
SBIT(I2CSTA, 0xC0, 5);
SBIT(I2CSTO, 0xC0, 4);
SBIT(I2CSI, 0xC0, 3);
SBIT(I2CAA, 0xC0, 2);
SBIT(I2CPX, 0xC0, 0);
/* IP */
SBIT(PADC, 0xB8, 6);
SBIT(PBOD, 0xB8, 5);
SBIT(PS, 0xB8, 4);
SBIT(PT1, 0xB8, 3);
SBIT(PX1, 0xB8, 2);
SBIT(PT0, 0xB8, 1);
SBIT(PX0, 0xB8, 0);
/* P3 */
SBIT(P30, 0xB0, 0);
/* IE */
SBIT(EA, 0xA8, 7);
SBIT(EADC, 0xA8, 6);
SBIT(EBOD, 0xA8, 5);
SBIT(ES, 0xA8, 4);
SBIT(ET1, 0xA8, 3);
SBIT(EX1, 0xA8, 2);
SBIT(ET0, 0xA8, 1);
SBIT(EX0, 0xA8, 0);
/* P2 */
SBIT(P20, 0xA0, 0);
/* SCON */
SBIT(SM0, 0x98, 7);
SBIT(FE, 0x98, 7);
SBIT(SM1, 0x98, 6);
SBIT(SM2, 0x98, 5);
SBIT(REN, 0x98, 4);
SBIT(TB8, 0x98, 3);
SBIT(RB8, 0x98, 2);
SBIT(TI, 0x98, 1);
SBIT(RI, 0x98, 0);
/* P1 */
SBIT(P17, 0x90, 7);
SBIT(P16, 0x90, 6);
SBIT(TXD_1, 0x90, 6);
SBIT(P15, 0x90, 5);
SBIT(P14, 0x90, 4);
SBIT(SDA, 0x90, 4);
SBIT(P13, 0x90, 3);
SBIT(SCL, 0x90, 3);
SBIT(P12, 0x90, 2);
SBIT(P11, 0x90, 1);
SBIT(P10, 0x90, 0);
/* TCON */
SBIT(TF1, 0x88, 7);
SBIT(TR1, 0x88, 6);
SBIT(TF0, 0x88, 5);
SBIT(TR0, 0x88, 4);
SBIT(IE1, 0x88, 3);
SBIT(IT1, 0x88, 2);
SBIT(IE0, 0x88, 1);
SBIT(IT0, 0x88, 0);
/* P0 */
SBIT(P07, 0x80, 7);
SBIT(RXD, 0x80, 7);
SBIT(P06, 0x80, 6);
SBIT(TXD, 0x80, 6);
SBIT(P05, 0x80, 5);
SBIT(P04, 0x80, 4);
SBIT(STADC, 0x80, 4);
SBIT(P03, 0x80, 3);
SBIT(P02, 0x80, 2);
SBIT(RXD_1, 0x80, 2);
SBIT(P01, 0x80, 1);
SBIT(MISO, 0x80, 1);
SBIT(P00, 0x80, 0);
SBIT(MOSI, 0x80, 0);
#define TA_UNPROTECT() do { \
TA = 0xAA; \
TA = 0x55; \
} while(0)
#define SFR_PAGE(n) do { \
TA_UNPROTECT(); \
SFRS = n; \
} while (0)
#endif